PRELIMINARY FUNCTIONAL SERVICING REPORT

(Rev. 1)

132 College Street

JUNE 11, 2025

Township of West Lincoln

[THIS PAGE IS INTENTIONALLY LEFT BLANK]

Table of Contents

1.0	Bacl	kground & Information 1
1	.1.	Introduction 1
1	.2.	Site Location & Proposed Development 1
2.0	Serv	vicing Analysis2
2	.1.	Water Servicing2
2	.2.	Sanitary Servicing3
	2.2.	1. Wastewater Assessment
2	.3.	Stormwater Servicing5
3.0	Stor	rmwater Management
3	.1.	Quantity Criteria7
3	.2.	Quality Criteria
3	.3.	Stormwater Design9
	3.3.	1. Quantity Control
	3.3.3	2. Quality Control
3	.4.	Erosion and Sediment Control12
4.0	Con	nclusions
5.0	Atta	achments

List of Figures

List of Tables

Table 1:	Existing Conditions Hydrologic Analysis Summary	.8
Table 2:	Post-Development Hydrologic Analysis Summary, No SWM	.8
Table 3:	Uncontrolled Flow Discharge and Allowable CULTEC Discharge Summary	.9
Table 4:	CULTEC Discharge Summary	10
Table 5:	Overall Site Stormwater Discharge Summary	10

1.0 Background & Information

1.1 Introduction

LandSmith Engineering & Consulting Ltd. have been retained by Phelps Homes Ltd. for the completion of a Functional Servicing Report in support of Zoning By-law applications for the lands located at 132 College Street, Smithville. A pre-consultation application (Official Plan Amendment No. 54) for the property was completed in 2020.

The purpose of this Functional Servicing Report is to review the existing municipal services currently available for the servicing of the proposed 157 residential units and ensure their suitability for the proposed Zoning By-law Amendment to accommodate the proposed development. In addition, this report will address the local Stormwater Management (SWM) context for the lot and the required stormwater quantity and quality control measures.

1.2 Site Location & Proposed Development

The 1.95-hectare site is located at municipal address 132 College Street, Smithville. The vacant College Street school is located on the western portion of the site with frontage on College Street (this school has since been demolished). The remainder of the site consists of an asphalt area, playgrounds, and grass fields at the rear of the school. The site is bound by single detached residential dwellings on Morgan Avenue to the north, a wooded area to the east, residential townhouses to the south, and residential townhouses fronting onto Morgan Avenue along with commercial properties to the west. Through the Township of West Lincoln's Official Plan Amendment No. 54, the site's zoning has been changed from Institutional to a Residential/Mixed Use Area. An R-Plan for the site prepared by A.T. McLaren Ltd. is attached in Appendix 'A' for reference.

The current proposal is for a total of 157 units, including 13 units fronting onto Morgan Avenue, and 144 units accessed off College Street. This is illustrated on the Concept Plan prepared by Fryett Turner Architects Inc. which is attached to this report within Appendix 'A' for reference purposes. The units fronting Morgan Avenue are 2-storey townhouse style units, with floor plans prepared by Capponi Lacroix Design Group Ltd. and attached within Appendix 'A' for reference. The units accessed from College Street include 9 apartment style blocks, with each block containing 3-storeys with 4 adjacent stacks and 4 units per stack. The floor plans for the apartment block units were prepared by Fryett Turner Architects Inc. and are attached within Appendix 'A' for reference purposes. The site location plan on the following page further illustrates the location of the proposed development in the context of the local Smithville area.

Figure 1: Site Location Plan (N.T.S.)

2.0 Servicing Analysis

2.1 Water Servicing

There is an existing 150mm diameter watermain along Morgan Avenue which serviced the now vacant College Street School. Along College Street there is a 150mm diameter watermain that begins at the southwest corner of the site and runs south to St. Catherines Street. As illustrated on the Site Servicing Plan attached in Appendix 'A', water service will be provided to the site by extending the existing 150mm watermain along College Street approximately 50m north to the proposed driveway entrance.

The Ontario Building Code has been utilized to calculate the expected maximum hydraulic load and associated peak domestic use flow rate for the proposed development. For the 13 units fronting Morgan Avenue, the calculations have been based on the floor plans provided by Capponi Lacroix Design Group Ltd. For the 144 units with access from College Street, the calculations have been based on the floor plans provided by Fryett Turner Architects Inc. Although these floor plans are not finalized, they can provide an estimation of the expected fixtures for the development.

Based on the fixture units method the proposed development will have a total of 2,042 fixture units. This is equivalent to a maximum hydraulic load for the development of 20.15 L/s. The supporting calculations describing how this value was determined have been attached in Appendix 'B' for reference purposes.

The Ontario Building Code has also been utilized to calculate the fire-flow demands for the development. Since there are two types of residential blocks within the development, fire-flow demand was calculated for each type of block at the location which would yield the highest fire-flow requirement based on proximity to neighbouring units. The supporting fire-flow demand calculations as well as a Fire Protection Plan have been attached in Appendix 'B' for reference purposes.

For the units fronting onto Morgan Avenue, the middle block was analyzed. Based on the average floor area and the building height the total building volume of 2,575 cubic meters was calculated. Taking into consideration the appropriate water supply and spatial coefficients this building size results in a required flow rate of 4,500 L/min or 75 L/s.

For the units accessed from College Street, Block 6 which is located at the northeast portion of the site was analyzed. Based on the average floor area and the building height the total building volume of 4,254 cubic meters was calculated. Taking into consideration the appropriate water supply and spatial coefficients this building size results in a required flow rate of 4,500 L/min or 75 L/s.

Attached in Appendix 'B' from the 2016 Niagara Region Master Servicing Plan is Figure 3.A.8 and Figure 3.A.9 which illustrate the watermain network in Smithville. These figures show that the existing maximum day demand pressure in the area surrounding the site is between 60-80 psi, and the available fire flow on College Street is 50-100 L/s. This indicates that the watermains adjacent to the site have the capacity to meet the domestic use and fire flows for the proposed development. However, prior to development, the existing watermains should be tested in order to determine the available pressures in the nearby system.

2.2 Sanitary Servicing

The existing Smithville sanitary sewer network surrounding the subject lands is illustrated in Figure S1 attached in Appendix 'C' for reference purposes. As can be seen, there is an existing 200mm diameter sanitary sewer to the north along Morgan Avenue, a 200mm diameter sanitary sewer to the south located on private property, and a 300mm diameter trunk sewer further south along St. Catherines Street. The existing sanitary sewers adjacent to the subject lands provide the opportunity for various sanitary servicing options for the site.

One option would be to connect to the 300mm trunk sewer along St. Catherines Street. However, this option is not economically feasible as it would require the installation of a sanitary sewer along College Street (where there is none) in order to connect to the trunk sewer on St. Catherines Street.

Another option would be to connect to the existing sanitary sewers to the south of the site. However, since these sewers are located in private property in which the subject lands do not border, connecting to them may not be economically feasible. This would require private agreements with the landowners whose lands would be affected by the service connection and may lead to legal issues or delays.

Based on the limitations of the previous options, it is proposed to connect to the Morgan Avenue sewer to provide sanitary service for the development. The Morgan Avenue sanitary sewer Plan & Profile drawing is detailed in Appendix 'C', and the proposed sanitary servicing for the site is illustrated on the Servicing Plan attached in Appendix 'A' for reference purposes.

The units fronting Morgan Avenue will be connected to the existing 200mm sanitary sewer with a proposed 150mm pipe entering from the north side of the townhouses. The remainder of the site (Blocks 1-9) will connect to the Morgan Avenue sewer with a 150mm diameter pipe at 0.50% slope through a 4m sanitary easement in between the northern townhouses. Blocks 1-5 will be connected to the municipal sewer with gravity flow, while Blocks 6-9 will be pumped through a forcemain.

For Blocks 6-9, we have consulted with Environment One Sewer Systems (E/One) to provide a sanitary pumping design. This design is detailed in Appendix 'C' and includes a Servicing Plan showing the pump station locations on site, pump station detailed drawings and performance curve, and a preliminary pressure sewer design analysis. The design specifies the installation of four WH484/WR484 grinder pump stations. With each station rated for flows of 26,498 L/day, this pumping capacity is sufficient for the sanitary flows that will be generated from Blocks 6-9 to be pumped to the gravity outlet at Sanitary Manhole 4.

2.2.1 Wastewater Assessment

A Sanitary Drainage Area Plan is attached in Appendix 'C' for reference purposes, which illustrates the contributing areas to the existing Morgan Avenue sanitary sewer in which the site will be connected to. The area upstream of the site was also analyzed in order to determine the sanitary flows which enter the Brock Street sewer north of the site and check the capacity of the receiving pipe. This upstream area is 36.6 hectares and is illustrated in Appendix 'C' for reference purposes.

A Post-Development Sanitary Sewer Design Sheet is attached in Appendix 'C' for reference purposes. As per the Niagara Region 2021 Water and Wastewater Master Servicing Plan, a daily per capita water

demand of 240 L/cap/day was used. For the existing residential dwellings on Morgan Avenue (Areas 1A and 4A), a density of 40 persons/hectare was used. Based on the number of dwellings in the upstream area (Area 5), a conservative estimate of 30 persons/hectare was used. As per the Township of West Lincoln standards, for the proposed townhouse units fronting Morgan Avenue (Areas 1B and 4B) a density of 2.3 persons/unit was used, and for the apartment style units accessed off of College Street (Area 3) a density of 1.8 persons/unit was used.

The Post-Development Sanitary Sewer Design Sheet demonstrates that with the proposed development, the peak flows to the 200mm Morgan Avenue sewer will be 6.23 L/s, resulting in 23% full pipe capacity. Once these flows from the Morgan Avenue sewer connect to the 300mm Brock Street sanitary sewer and include flows from the entire upstream area, the peak flow is 30.45 L/s and results in 50% full pipe capacity. This indicates that there is ample capacity in the existing sanitary sewers to accommodate the flows from the proposed development

The downstream system flows to the Sanitary Pumping Station (SPS) at municipal address 214 St. Catherines Street which has an operational capacity of 104 L/s and can accommodate the peak flows from the site.

2.3 Stormwater Servicing

There is an existing storm sewer which flows east adjacent to the southern curb along Morgan Avenue and is illustrated on the Servicing Plan attached in Appendix 'A'. East of the catchbasin manhole at the intersection of Morgan Avenue and College Street, this sewer has a diameter of 375mm and a slope of 0.84%. The storm sewer continues east along Morgan Avenue and increases to a 450mm diameter pipe at 0.55% slope and then to a 525mm diameter pipe at 0.31% slope before connecting to the manhole at the end of the cul-de-sac at the eastern limit of Morgan Avenue. From this manhole the flow is conveyed 84m south through a 600mm diameter pipe at 0.30% slope along an existing sewer easement before draining into a channel at the southeast of the site.

Flow continues southeast through this channel as it exits the site and drains towards the Old Town Gateway Estates development to the east, discharging into a ditch inlet catch basin (DICB) and connecting to the 750mm diameter pipe at 0.70% slope that runs easterly between the existing townhouses at 53 and 57 Dennis Drive. Flows continue south through the 1050mm pipe along Dennis Drive and eventually outlets into Twenty Mile Creek south of St. Catherines Street. This DICB is detailed on the General Services Plan for the Old Town Gateway Estates attached in Appendix 'D'.

The storm drainage area plan for the existing development to the east known as Old Town Gateway Estates is attached in Appendix 'D'. This plan illustrates that the subject lands at 132 College Street were included in catchment Area 2 for this development, which has a run-off coefficient of 0.33. As

seen on the pre-development drainage area plan for the site attached in Appendix 'D', the areas of the existing site which drain towards Old Town Gateway Estates include pre-development drainage areas 1-3, which have a combined area of 1.89 hectares and are 34% impervious. This level of imperviousness is consistent with the run-off coefficient from catchment area 2 from the Old Town Gateway Estates drainage area plan.

In reviewing the extents of the Old Town Gateway Estates storm drainage area plan, it is evident that area 1 has been overstated by approximately 1 hectare. This area includes a portion of Brock Street, which has an existing storm sewer and overland flow route which is conveyed south towards St. Catherine Street, and not towards Morgan Avenue to the east. The Brock Street storm sewers do not connect to the Morgan Avenue storm sewers.

As illustrated on the Servicing Plan attached in Appendix 'A', it is proposed to connect to the existing 600mm diameter storm sewer which runs south from the Morgan Avenue cul-de-sac at a proposed manhole (STM MH 0) where the existing sewer easement meets the property line at the northeast corner of the site. From this manhole a proposed 675mm diameter pipe will continue south at a 0.30% slope until connecting to a proposed manhole (STM MH 1) at the southern property line. STM MH 1 is also connected to the outlet pipe from the proposed underground storage tank and a 750mm diameter pipe which will convey flows east out of the site. Flows will continue through the 750mm diameter pipe at a 0.38% slope and discharge through a proposed concrete headwall exiting the site into the existing channel.

Within the site there will be a proposed 4.5m wide storm sewer easement belonging to the Township from where the existing storm 600mm storm sewer connects to STM MH o and continues south and then east before exiting the site and discharging to the channel at the southeast corner.

Storm sewer calculation sheets are provided in Appendix 'D' which demonstrate that the proposed outlet pipe for the site will have capacity for all design storm events based on the Town of West Lincoln Standards and IDF Values. As can be seen, the 750mm diameter pipe which conveys stormwater out of the site reaches 41% capacity for the 5-year storm, and 98% capacity for the 100-year storm.

3.0 Stormwater Management

3.1 Quantity Criteria

The Pre-Development Drainage Area Plan attached in Appendix 'D' illustrates the existing drainage areas for the site. As seen on this plan, the majority of the site discharge ends up in the channel to the east of the site. Flows from Drainage Areas 1 and 3 drain north towards Morgan Avenue, where they enter the Morgan Avenue storm sewer and are conveyed east to the end of the cul-de-sac before continuing south through the existing 600mm storm sewer which then flows into a concrete headwall and continues east through a channel at the southeast of the site. Drainage Area 2, which includes the majority of the rear of the school and adjacent grass field, drains towards the southeast of the site where it also enters the existing channel and continues southeast, exiting the site through an existing 300mm CSP culvert. Drainage Area 4 includes the southwest portion of the existing school, and drains south along College Street where it enters the 250mm storm sewer and continues south towards St. Catherines Street.

The Post-Development Drainage Area Plan attached in Appendix 'D' illustrates the drainage areas for the proposed development. Post-development Drainage Area 1 includes the 13 units fronting onto Morgan Avenue as well as the landscaped areas along College Street adjacent to Block 1, and will flow north uncontrolled and enter the Morgan Avenue storm sewer. Post-development Drainage Area 2 includes the 144 units and parking areas that are accessed off College Street, and flows from this area will be controlled through a CULTEC Recharger 902HD underground storage tank located in the southeast corner of the parking lot. Post-development Drainage Area 3 includes the landscaped area adjacent to College Street to the west of Block 2, and will flow south uncontrolled along College Street. Post-development Drainage Area 4 includes the back half of Blocks 7 and 8, and will flow east uncontrolled into the adjacent channel.

Peak flows and runoff volumes for the pre- and post-development areas were found using MIDUSS v2 and the 3-Hour Chicago design storm distribution. The Township of West Lincoln's IDF Curve Values were used for the minor (5-year) and major (100-year) storm events. The pre-development peak flows are shown in Table 1, and the post-development flows are shown in Table 2 on the following page. For the post-development condition, the site was analyzed with no stormwater storage available. The MIDUSS output files are attached in Appendix 'D' for reference purposes.

Drainage Area	Area (ha)	% Impervious	5-Year Peak Runoff (m ³ /s)	100-Year Peak Runoff (m ³ /s)
1	0.270	94%	0.072	0.178
2	1.577	22%	0.101	0.267
3	0.043	95%	0.012	0.028
4	0.064	76%	0.014	0.035
T	otal Peak R	unoff (m ³ /s)	0.199	0.508

 Table 1: Pre-Development Hydrologic Analysis Summary

Drainage Area	Area (ha)	% Impervious	5-Year Peak Runoff (m ³ /s)	100-Year Peak Runoff (m³/s)	
1	0.281	48%	0.040	0.115	
2	1.548	78%	0.346	0.819	
3	0.011	57%	0.002	0.005	
4	0.112	46%	0.016	0.046	
Total	Peak Runo	ff (m ³ /s)	0.404	0.985	

Table 2: Post-Development Hydrologic Analysis Summary, No SWM

Stormwater quantity control measures are to be designed to ensure that post-development flows are equal or less than the pre-development flows for all design storm events. Based on the post-development peak flows for the site increasing from the pre-development conditions 103% for the 5-year and 94% for 100-year storm events, on-site stormwater storage will be required.

3.2 Quality Criteria

The site is located within the Twenty Mile Creek subwatershed, which flows to Lake Ontario. As such, Normal stormwater quality treatment control (70% overall total suspended solids removal) has been applied for the proposed development considering treatment train design principles in accordance with the Township of West Lincoln and MECP's standards.

3.3 Stormwater Design

3.3.1 Quantity Control

A preliminary site Grading plan has been prepared for the development and as noted above is contained within Appendix 'A' for reference purposes. The drainage pattern for the site post-development includes controlling the majority of the site through underground storage with a controlled discharge to the eastern channel, while also having some uncontrolled areas on the perimeter of the site. Based on this grading plan it was proposed that a CULTEC Recharger 902HD system should be installed at the south-east area of the site underneath the proposed parking lot.

Based on the proposed grading the balance of the site can be routed through the proposed CULTEC system. In order to match the existing peak runoff from the development area in the proposed condition the uncontrolled flows are subtracted from the existing peak runoff rates. This gives the maximum allowable discharge from the CULTEC system as summarized in Table 3 on the following page. Note that once again the Chicago 3-hour storm was utilized together with the Township of West Lincoln's IDF parameters for consistency with the existing conditions analysis.

Return Period (Year)	Pre-Dev. Areas 1-3 Existing Total Peak Runoff to Channel (m ³ /s)	Post-Dev. Areas 1, 3, 4 Uncontrolled Peak Flow (m³/s)	Post-Dev. Area 2 - CULTEC Peak Allowable Discharge Rate (m ³ /s)	
5	0.185	0.058	0.127	
100	0.473	0.166	0.307	

 Table 3: Uncontrolled Flow Discharge and Allowable CULTEC Discharge Summary

MIDUSS v2 Hydrologic analysis was carried out for the routing of the storage system and it was determined that a minimum of 570 cubic meters of storage would be required within the system in order to limit discharge to the allowable rates.

A bed layout sized 52.32m x 11.43m was designed using software provided by CULTEC and the rating curve for the storage was determined based on the CULTEC sizing software. The total storage provided with this design is 613 cubic metres. This total storage volume does not take into account the approximately 73 cubic metres of storage provided by the stone base underneath the storage chambers, which will be conveyed to groundwater (with the infiltration rate subject to the soil conditions).

The storage volume provided was increased from the minimum required in order to ensure discharge rates would meet the flow targets for all design storm periods. The base of the stone for the CULTEC

bed is to be set at 187.13m in elevation, and the chamber base at 187.43m, as described on the Site Servicing Plan attached in Appendix 'A' for reference.

It was determined that a two-orifice design would be required in order to meet the discharge targets for each of the return period events as follows:

- Orifice 1 290mm diameter Inv. Elevation 187.43m
- Orifice 2 210mm diameter Inv. Elevation 187.83m

These sizes and elevations of each of the orifices were utilized in the MIDUSS v2 analysis, as can be seen through review of the output files contained in Appendix 'D'. Based on the routing of the system the discharge from the proposed CULTEC Recharger 902HD is summarized via Table 4 below.

Return Period (Year)	Storage Required (m ³)	Peak Outflow (m ³ /s)	Water Depth (m)	WSEL (m)	Flow Target (m³/s)	% of Flow Target
5	274.2	0.122	0.556	187.986	0.127	96.1%
100	604.2	0.302	1.493	188.923	0.307	98.4%

Table 4: CULTEC Discharge Summary

Based on the foregoing analysis the total storage of 613 cubic metres provided by the CULTEC 902HD system is sufficient to ensure that the sum of the peak uncontrolled and controlled flows does not exceed the existing conditions for each of the noted return periods. Table 5 below summarizes the total flows from the site under the proposed design and compares them to the existing conditions. As can be seen the discharge from the development area to the channel to the east of the site is reduced by virtue of the proposed stormwater management design.

Return Period (Year)	Existing Total Peak Runoff to Channel (m³/s)	Areas 1, 3, 4 - Uncontrolled Peak Flow (m³/s)	Area 2 – CULTEC Peak Allowable Discharge Rate (m ³ /s)	Area 2 - CULTEC Actual Discharge Rate (m ³ /s)	Proposed Total Peak Runoff (m³/s)	% Decrease
5	0.185	0.058	0.127	0.122	0.180	-2.7%
100	0.473	0.166	0.307	0.304	0.470	-0.6%

Table 5: Overall Site Stormwater Discharge Summary

The grading design ensures that the overland flow route is maintained in the post-development condition, with flows being conveyed south from the Morgan Avenue cul-de-sac and running behind the units of Blocks 7 and 8 before flowing east through the cemetery lands towards the existing DICB between Blocks 39 and 40 of the Old Town Gateway Estates development.

3.3.2 Quality Control

Runoff from the subject lands eventually discharge into Twenty Mile Creek. Once it enters the creek, it flows north before discharging into Lake Ontario. Given the ultimate receiver of stormwater is Jordan Harbour, MECP 'Normal' stormwater quality control protection is required for this development. This includes providing 70% total suspended solids (TSS) removal. In keeping with the Township of West Lincoln's criteria – the ETV particle size distribution must be used for sizing of such stormwater quality control measures.

Stormwater quality control can be provided for the site by multiple means through a treatment train approach. This includes the installation of an oil-grit-separation (OGS) manhole, installation of CB Shield devices within the proposed catch basins, and the inclusion of a separator row within the underground storage chamber.

Based on the contributing area the required, an OGS manhole has been proposed, as seen on the Site Servicing Plan in Appendix 'A'. The OGS has been sized as a HydroWorks HydroDome HD10 unit. The sizing of this OGS has been completed using the ETV particle size distribution for which the HydroWorks products are certified. The HydroWorks sizing report together with links to where the ETV certification for the product can be found are included in Appendix 'D' for reference. The testing of these units has been independently completed by third parties using the ETV particle size distribution and confirmed to provide 70% removal efficiency.

Preliminary analysis indicates that the installation of a CB Shields within all site catchbasin will provide approximately 50% TSS removal efficiency based on the ETV particle size distribution. A CB Shield operations manual and design chart, as well as the ETV verification statement is attached within Appendix 'D' for reference.

Additional stormwater quality can be provided through the inclusion of a Separator Row within the CULTEC storage tank. This will force stormwater entering the chambers to pass through a filter cloth with 0.300mm openings and reduce the amount of TSS exiting the site, as well as ensure that inflows to the storage chambers will not contaminate the groundwater. The separator row is an ETV verified technology that will provide approximately 80% long term TSS removal as a standalone feature for the CULTEC unit on site. The separator row filtration verification statement is attached in Appendix 'D' for reference purposes. Shop drawings with certification of the ability of the CULTEC storage tank to provide the 80% long term TSS removal will be provided prior to construction.

As noted above, the required level of long term TSS removal is 70%. The proposed OGS Hydroworks HD10 will provide 70% TSS removal and the CB Shields will provide 50% TSS removal. Further

quality can be provided by a separator row within the underground storage tank. Together this treatment train approach will meet the noted quality control criteria for 'Normal' protection of 70% long term TSS removal.

3.4 Erosion and Sediment Control

Erosion and sediment control measures implemented during construction are vital to ensuring that downstream water quality is not degraded as a result of the proposed development. An Erosion and Sediment Control (ESC) Plan has been included as part of the engineering drawings set for this development (detailed in Appendix 'A') together with notes specifying the required maintenance of these measures during the construction period while the ground is disturbed.

Interim sediment control measures will be implemented during construction. These include the addition of mud mats at the entrances to the site, as well as silt sacks covering all nearby catch basins on College Street and Morgan Avenue.

The ESC measures should be inspected monthly and after every rainfall event, and maintained to ensure no sediment leaves the site during construction and until such time as ground cover is established after the construction period. This is an important part of stormwater quality control, and the requirements indicated on the ESC plan must be adhered to until the completion of the project.

4.0 Conclusions

In conclusion, based on the foregoing analysis we recommend that the proposed development of 157 residential units on the site at 132 College Street can be completed in accordance with the requirements of the Township of West Lincoln as follows:

- 1. Water servicing can be provided through a proposed 150mm watermain entering the site off of College Street. Peak domestic demand is expected to be 20.15 L/s.
- 2. It is proposed to provide a 150mm sanitary sewer to service the proposed development which connects to the existing 200mm sanitary sewer on Morgan Avenue. A peak domestic sanitary flow rate of 6.23 L/s is expected to be generated from the site. Four sanitary grinder pumping stations will pump sanitary flows for Blocks 6-9.
- 3. On-site stormwater quantity controls will be provided by an underground storage chamber located in the southeast portion of the site underneath the parking lot. The storage tank will have control orifices sized 290mm and 210mm and provide 613 cubic metres of storage volume.
- 4. In order to ensure storm water quality control for the site, an oil-grit-separation manhole will be installed, along with CB shields in all proposed catch basins and a separator row within the underground storage chamber. This arrangement, in combination provides 70% long-term TSS removal and "Normal" level protection.

Thank you for your consideration of the above Functional Servicing Report. Should you have any questions or require clarification with respect to any part of the above please do not hesitate to contact the undersigned.

Respectfully submitted,

ndrew Smith

Andrew Smith, P. Eng. Principal & Director LandSmith Engineering & Consulting Ltd. 289-309-3632 andrew@landsmithec.com

5.0 Attachments

Appendix 'A' – Background Information

Site Plan by Fryett Turner Architects Inc. Topographic Survey by Kirkup Mascoe Ure Surveying Ltd. Plan of Survey by Douglas G. Ure & Sons R-Plan by A.T. McLaren Ltd. Floor Plans for Units Fronting Morgan Ave. by Capponi Lacroix Design Group Ltd. Floor Plans for Units Accessed off College St. by Fryett Turner Architects Inc. Preliminary Grading Plan Preliminary Servicing Plan Preliminary Erosion and Sediment Control Plan

Appendix 'B' - Water Servicing Analysis

Domestic Water Demand Calculations Fire Flow Requirement Calculations Figure F1: Fire Protection Plan Figure 3.A.8: Smithville Existing Max Day Demand Pressure (Region of Niagara, 2016 MSP) Figure 3.A.9: Smithville Existing System Fire Flow (Region of Niagara, 2016 MSP)

Appendix 'C' – Sanitary Servicing Analysis

Figure S1: Smithville Existing Sanitary Sewers 132 College Street, Smithville - Upstream Sanitary Area Sanitary Drainage Area Plan Post-Development Sanitary Sewer Design Sheet Morgan Avenue Sanitary Sewer Plan & Profile Sanitary Grinder Pump Stations by E/One

- Servicing Plan
- Preliminary Design Analysis
- WH484/WR484 Detail Sheets
- Sanitary Grinder Pump Performance Curve

Appendix 'D' – Stormwater Management

Pre-Development Drainage Area Plan - Figure 1 Post-Development Drainage Area Plan - Figure 2 Old Town Gateway Estates Storm Drainage Area Plan by S. Llwellyn & Associates Ltd. Old Town Gateway Estates As-Built General Services by S. Llwellyn & Associates Ltd. Storm Sewer Design Sheet – 5-Year Storm Sewer Design Sheet – 100-Year MIDUSS v2 Output Files CULTEC Recharger 902HD Design Sheets CULTEC Separator Row Filtration System Verification Statement Hydroworks HD Sizing Summary Hydroworks HD ETV Verification Statement Hydroworks HD Operations and Maintenance Manual CB Shield Operations Manual and Design Chart CB Shield ETV Verification Statement

APPENDIX 'A' – Background Information

Site Plan by Fryett Turner Architects Inc.

Topographic Survey by Kirkup Mascoe Ure Surveying Ltd.

Plan of Survey by Douglas G. Ure & Sons

R-Plan by A.T. McLaren Ltd.

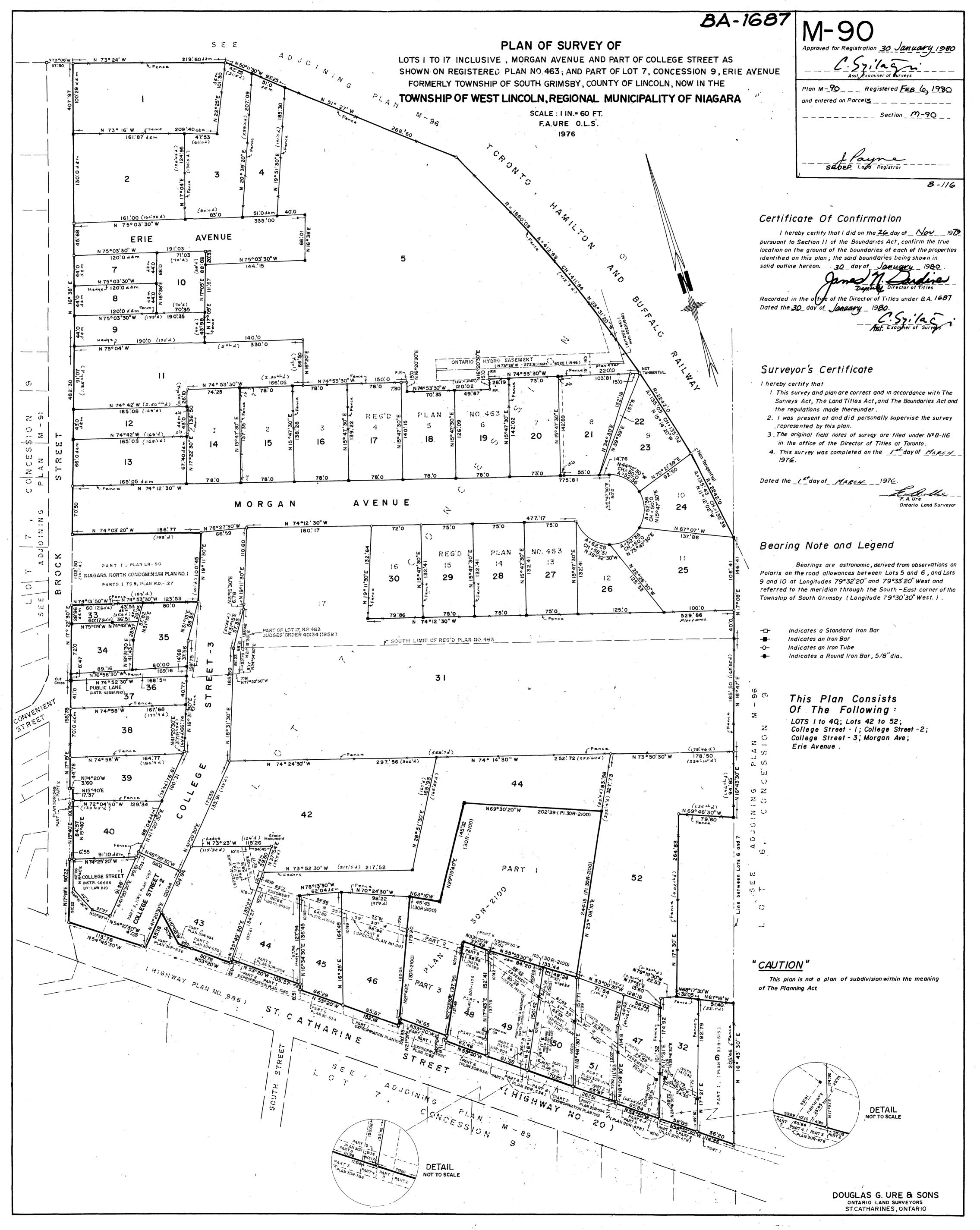
Floor Plans for Units Fronting Morgan Ave. by Capponi Lacroix Design Group Ltd.

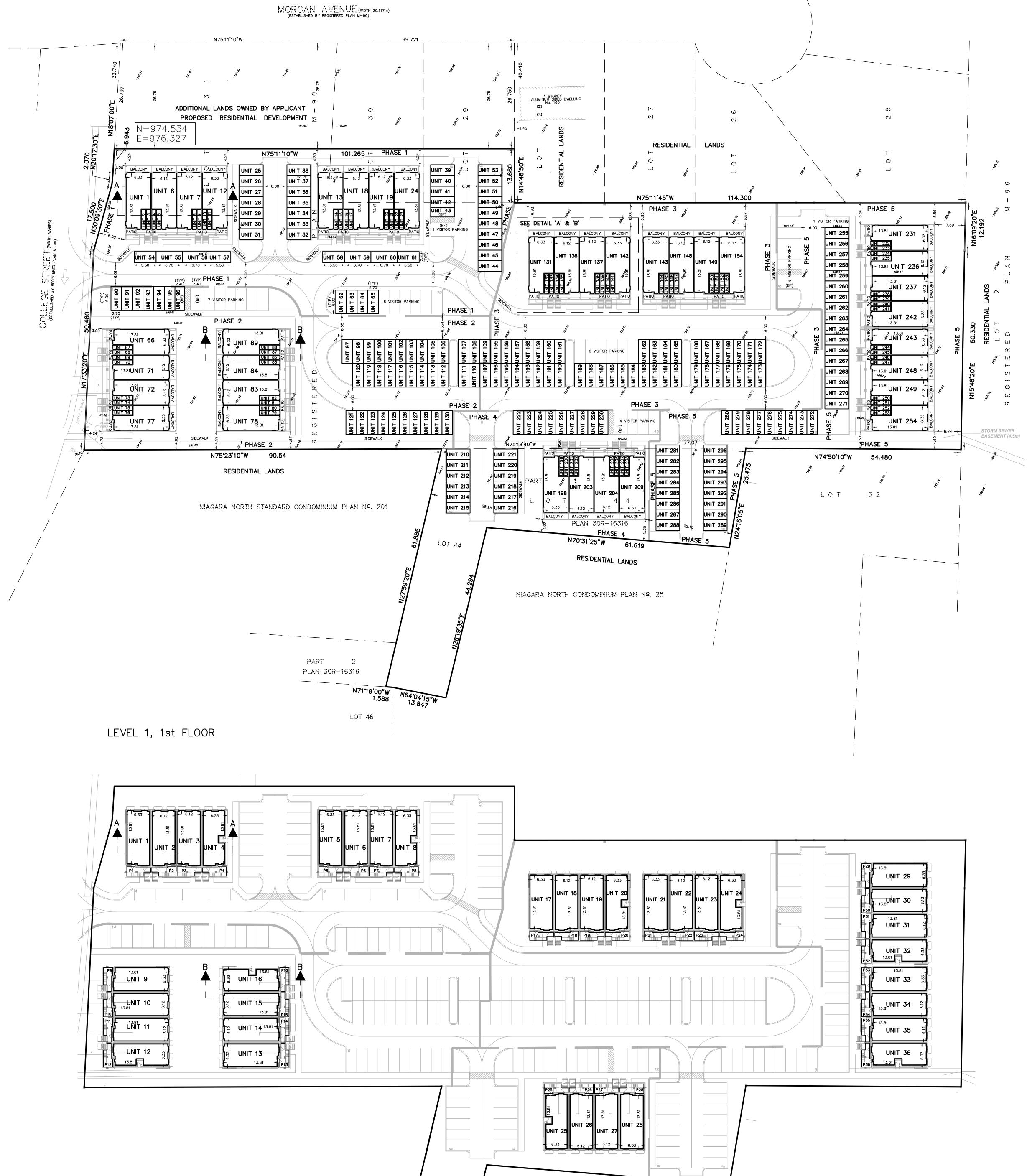
Floor Plans for Units Accessed off College St. by Fryett Turner Architects Inc.

Preliminary Grading Plan

Preliminary Servicing Plan

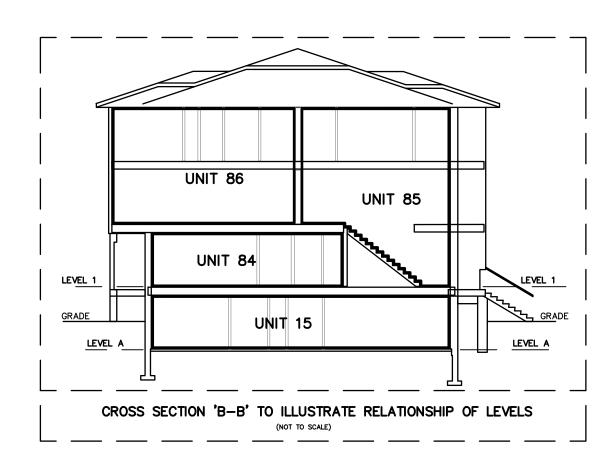
Preliminary Erosion and Sediment Control Plan

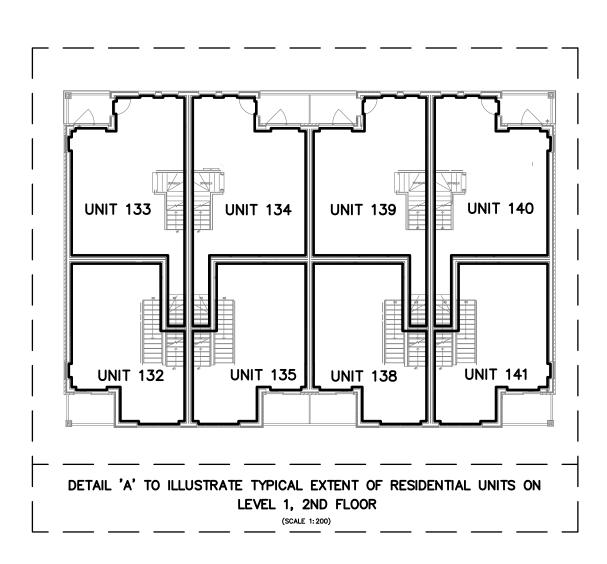


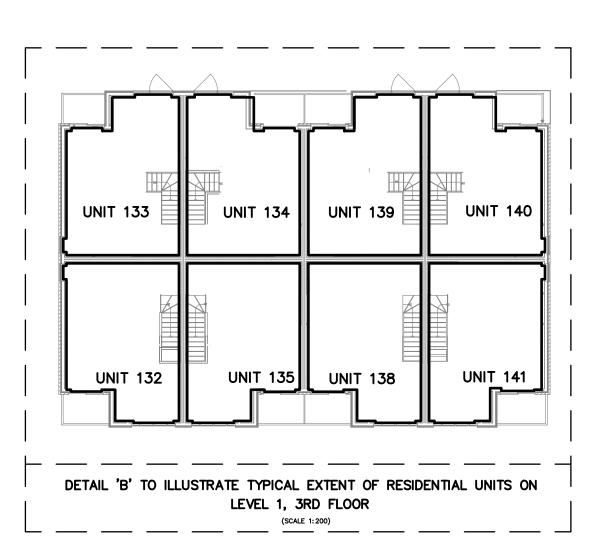

REVISIONS

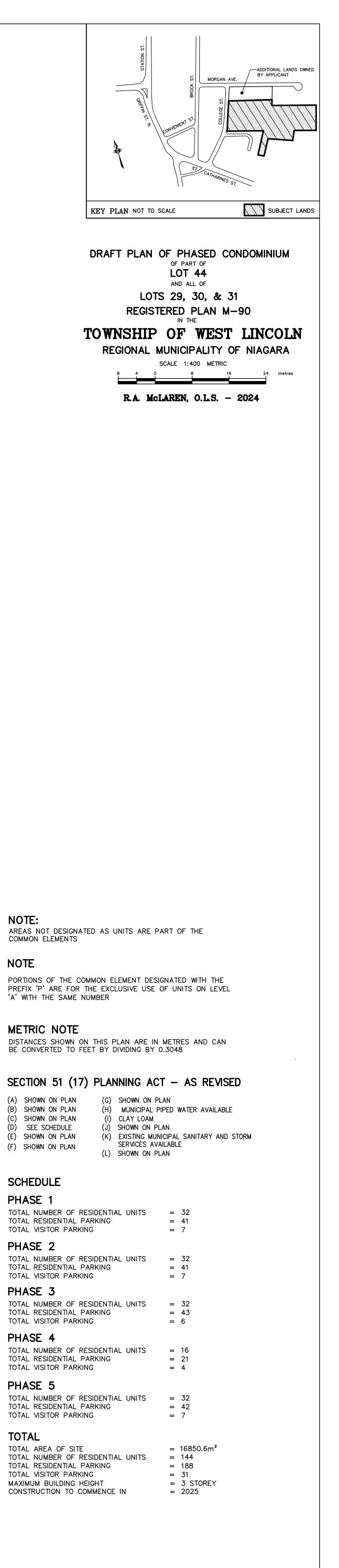
DATE

A1.0

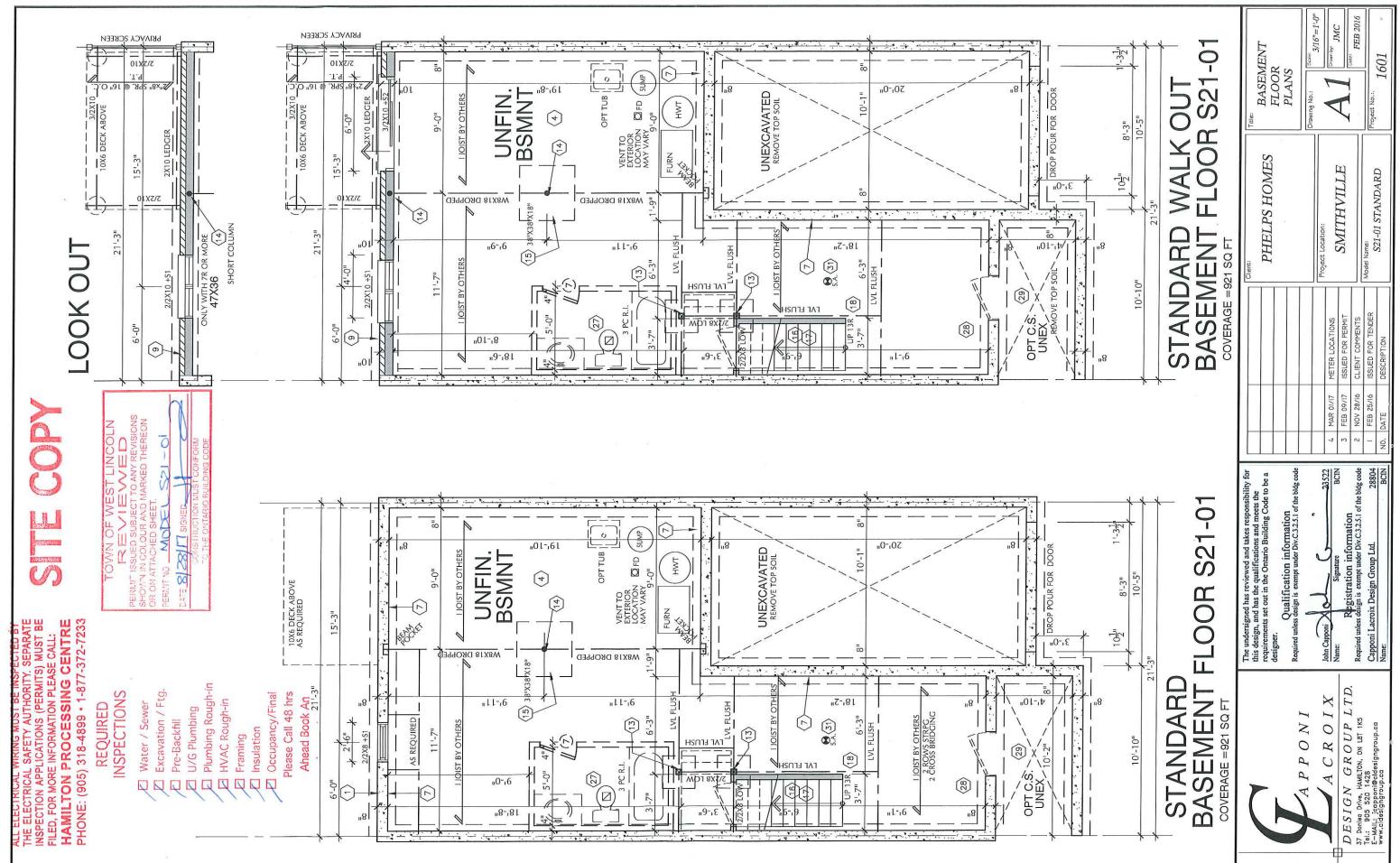


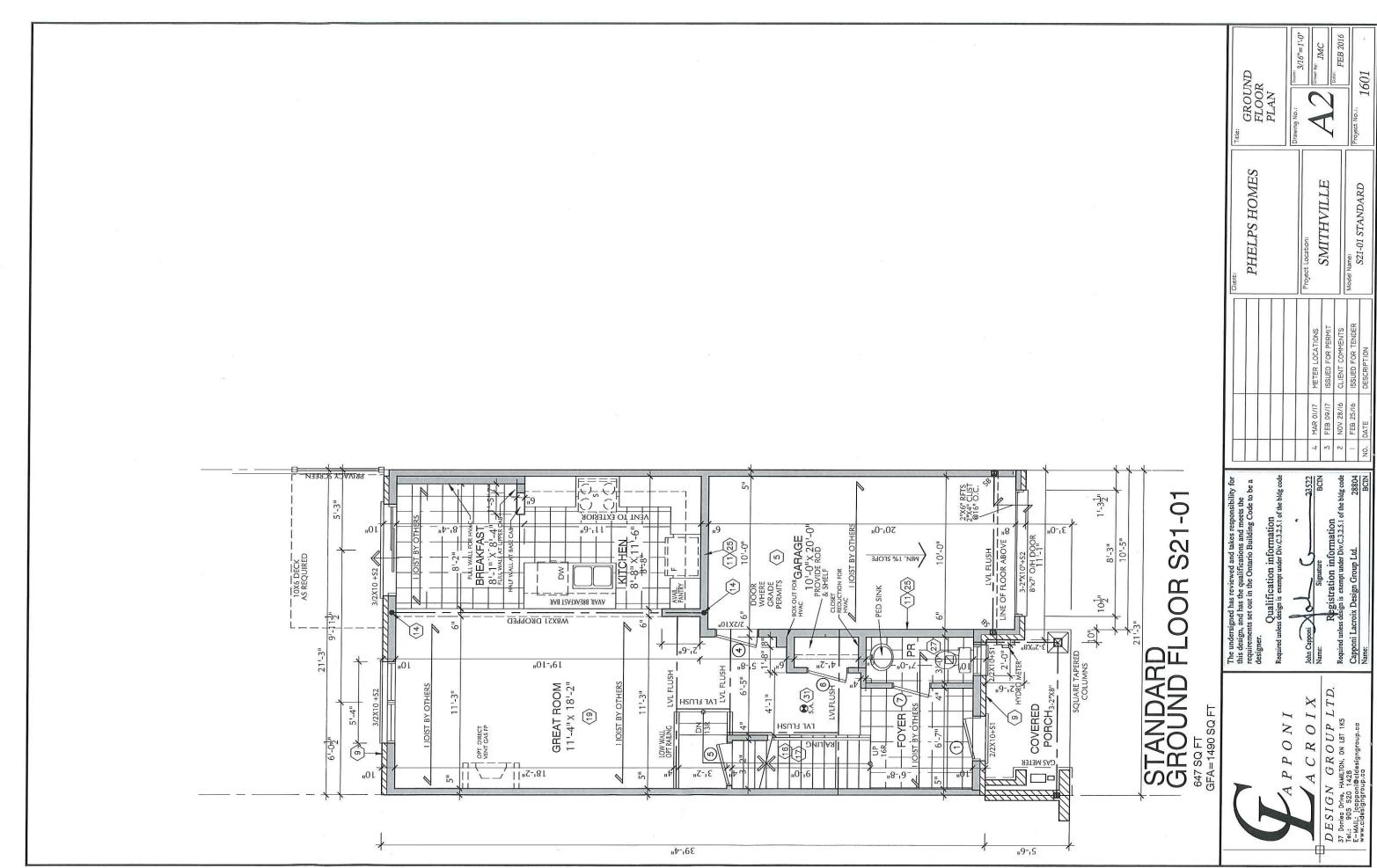


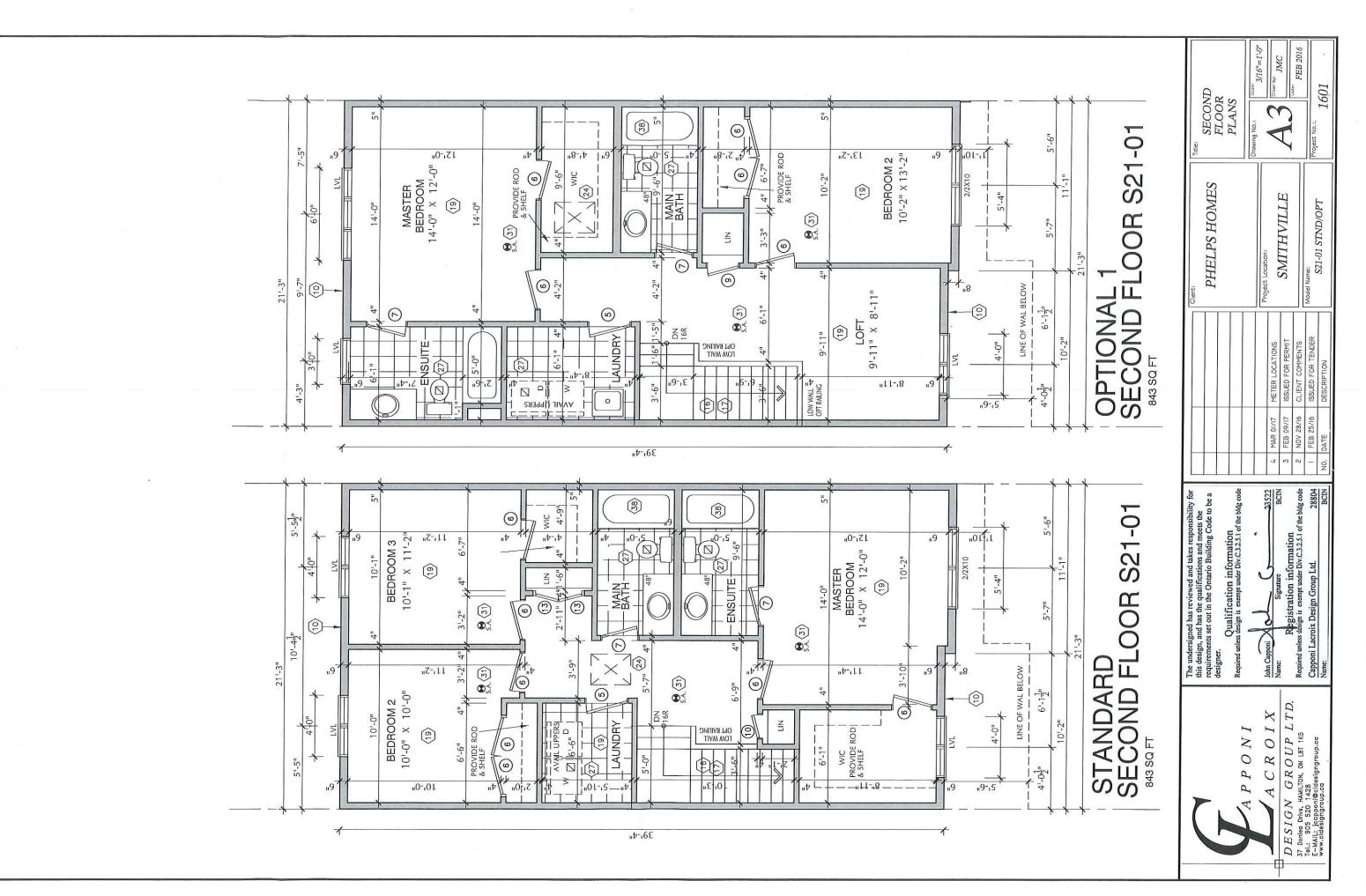


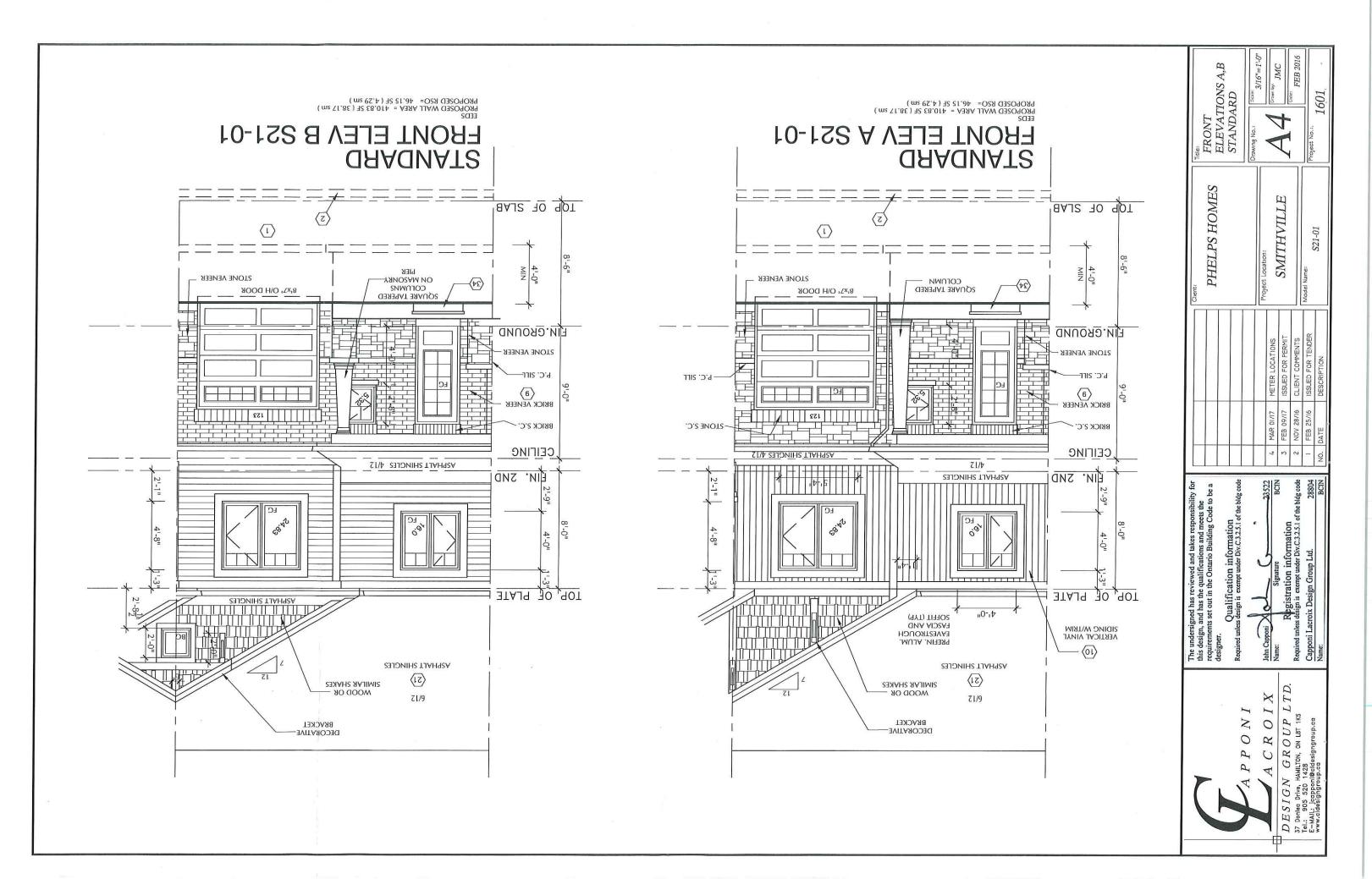

LEVEL A, BASEMENT FLOOR

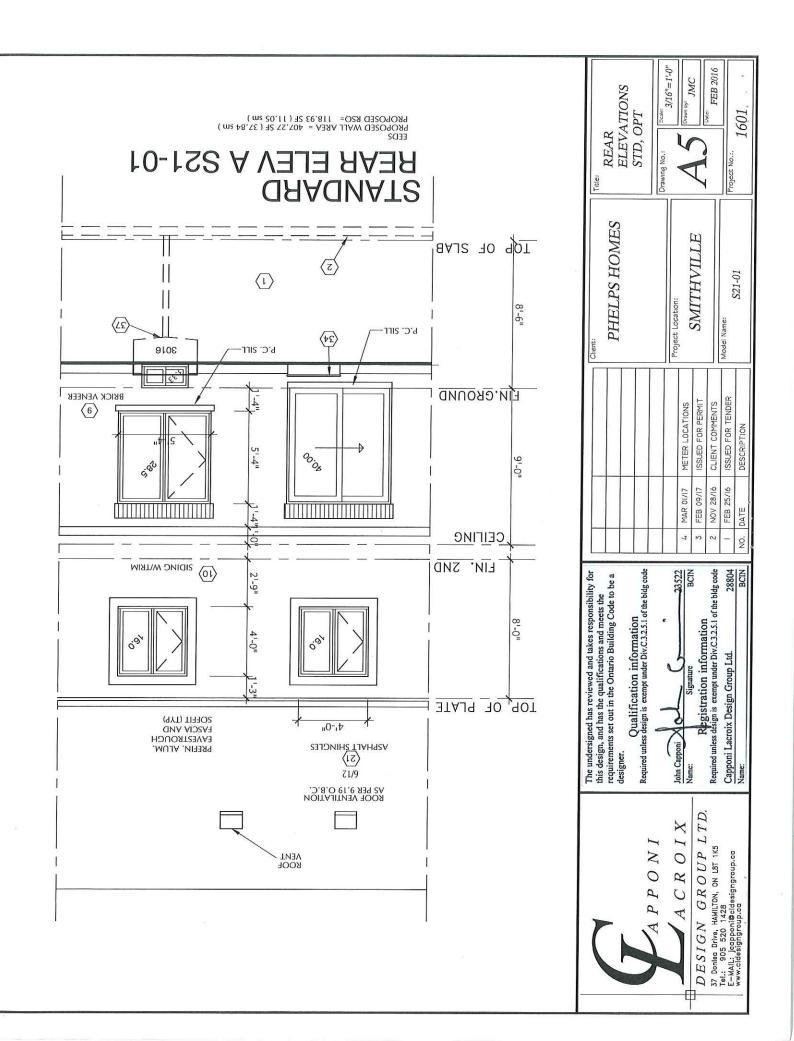
	UNIT 2	UNIT 5	UNIT 8	UNIT 11	
	UNIT 2	UNIT 5	UNIT 8	UNIT 11	
LEVEL 1			UNIT 7		<u>LE</u> VEL <u>1</u>
G <u>RADE</u>	UNIT 1	UNIT 2	UNIT 3	UNIT 4	<u>GRADE</u>
		 ION 'A—A' TO ILLU (NOT TO	STRATE RELATIONSH		<u> </u>

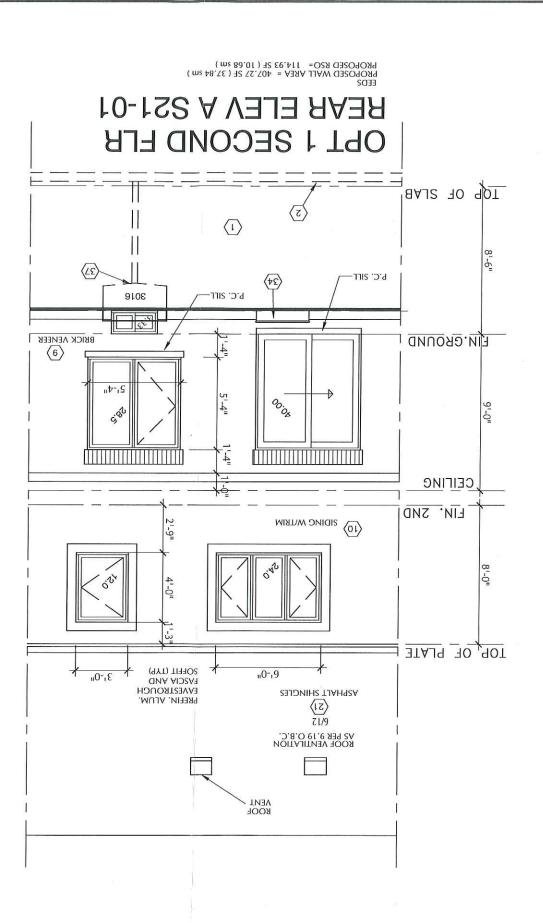


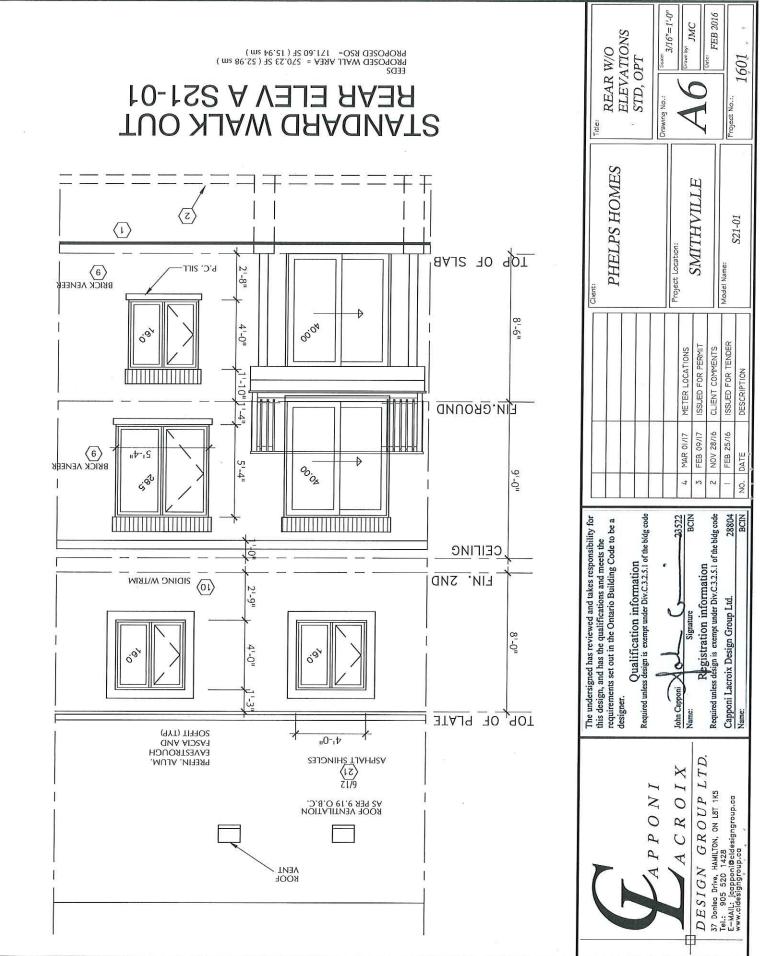


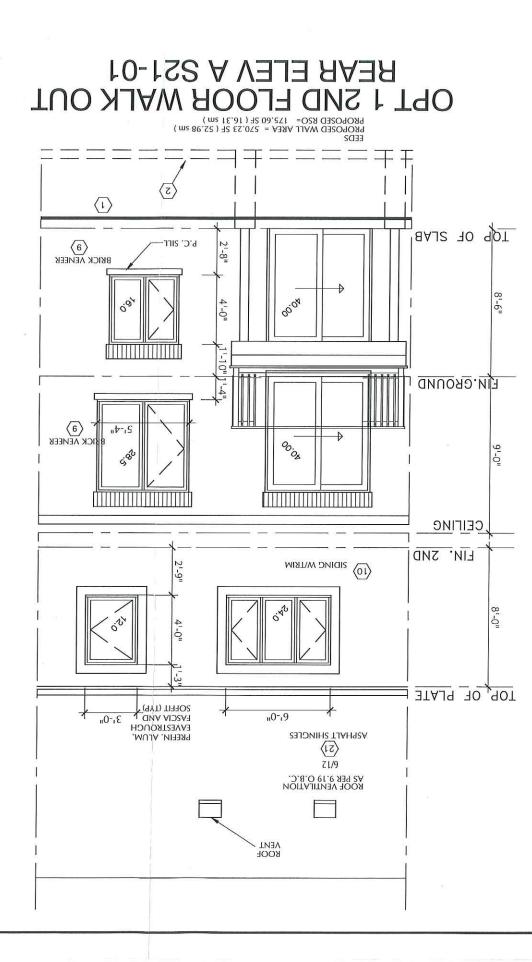

SURVEYOR'S CERTIFICATE: I CERTIFY THAT: THE BOUNDARIES OF THE LANDS TO BE SUBDIVIDED AS SHOWN ON THIS PLAN AND THEIR RELATIONSHIP TO THE ADJACENT LANDS ARE ACCURATELY AND CORRECTLY SHOWN.

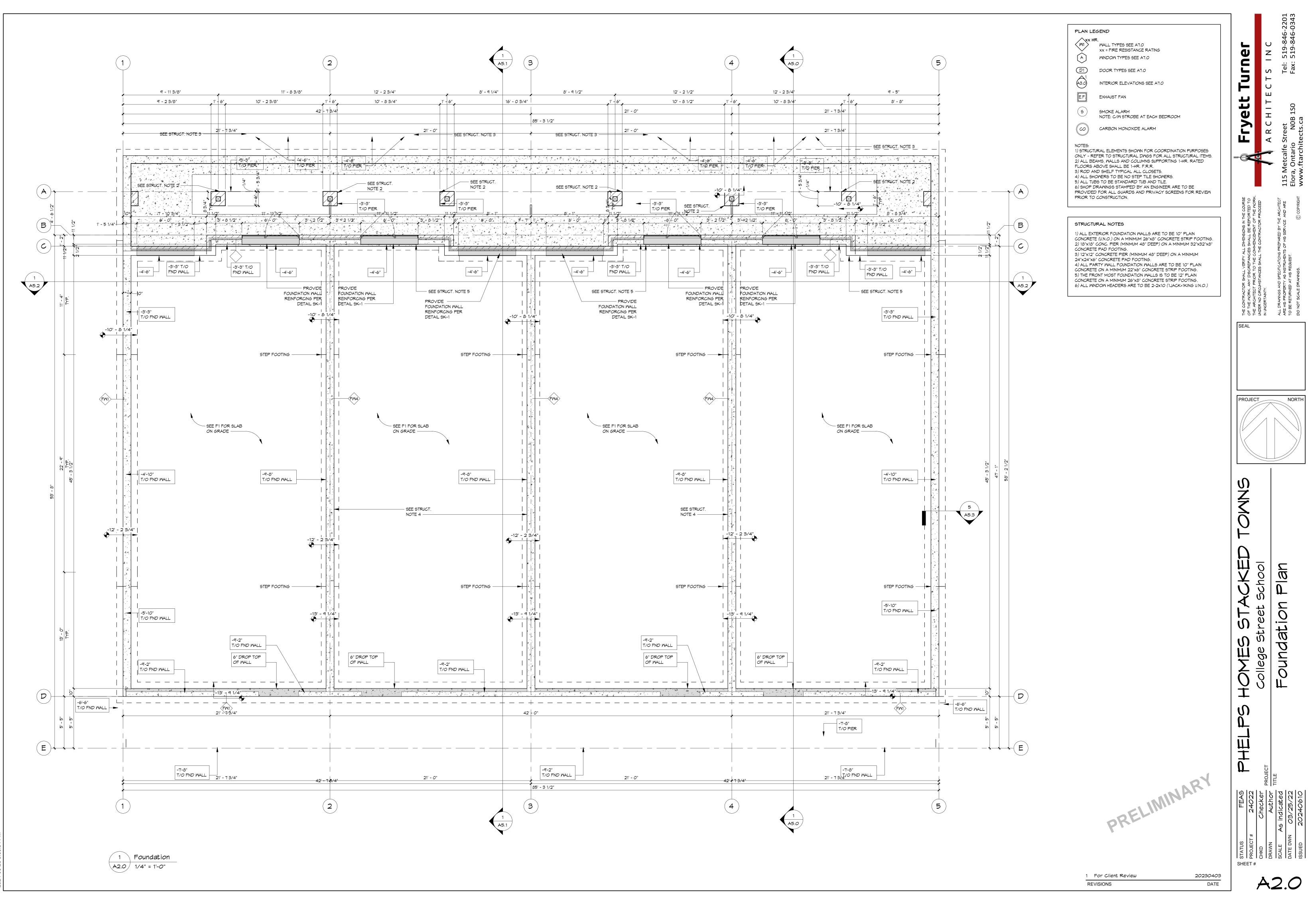


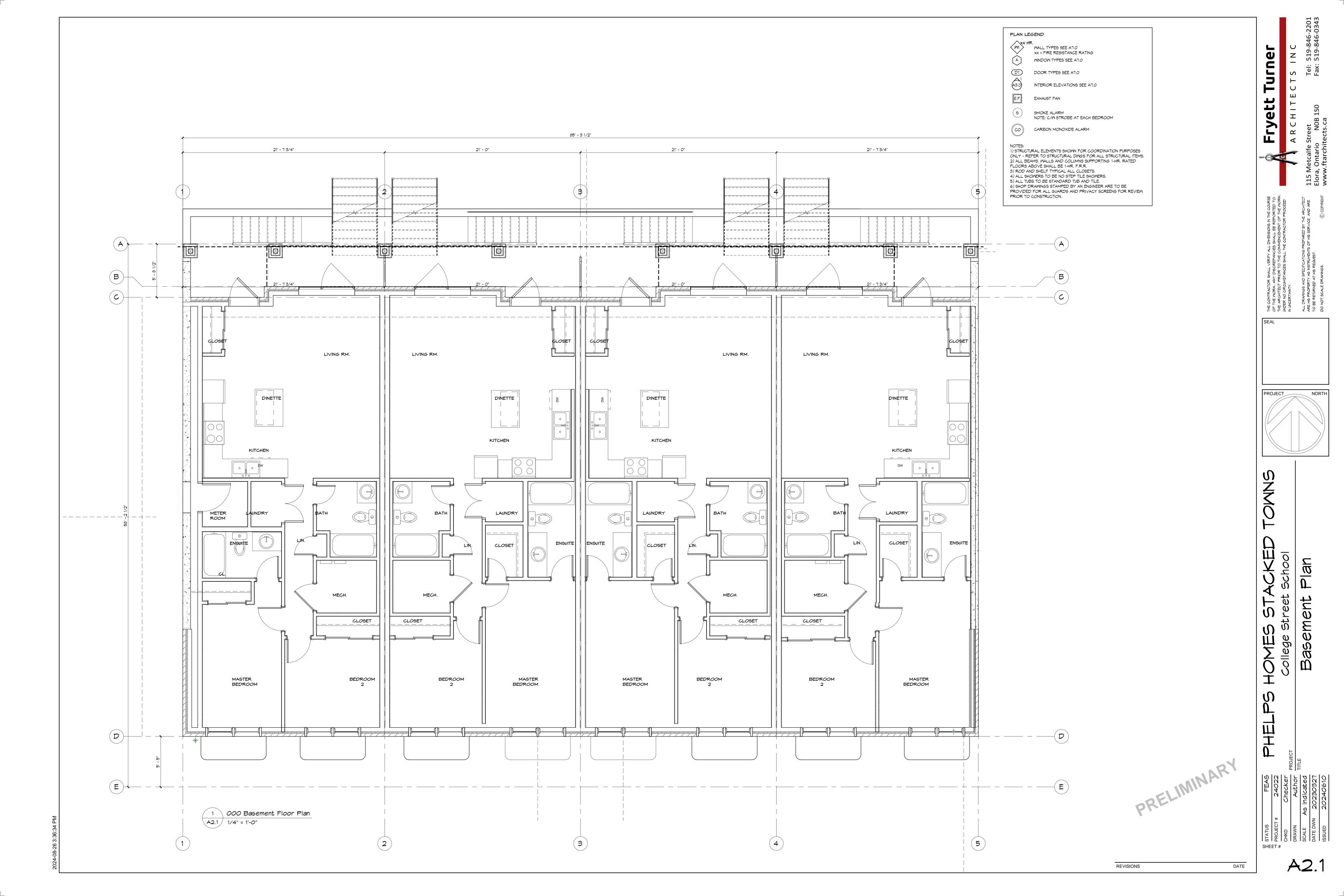


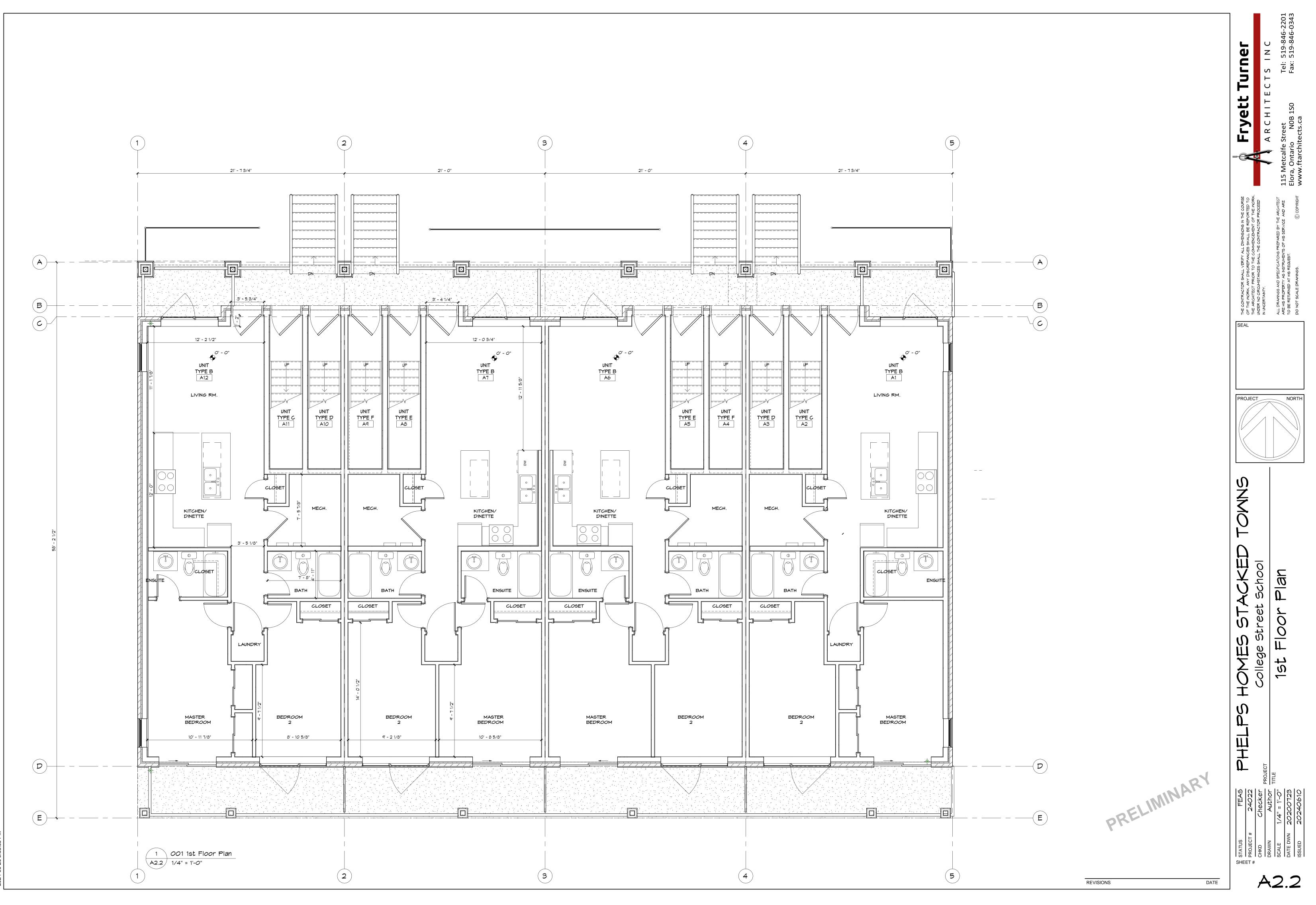


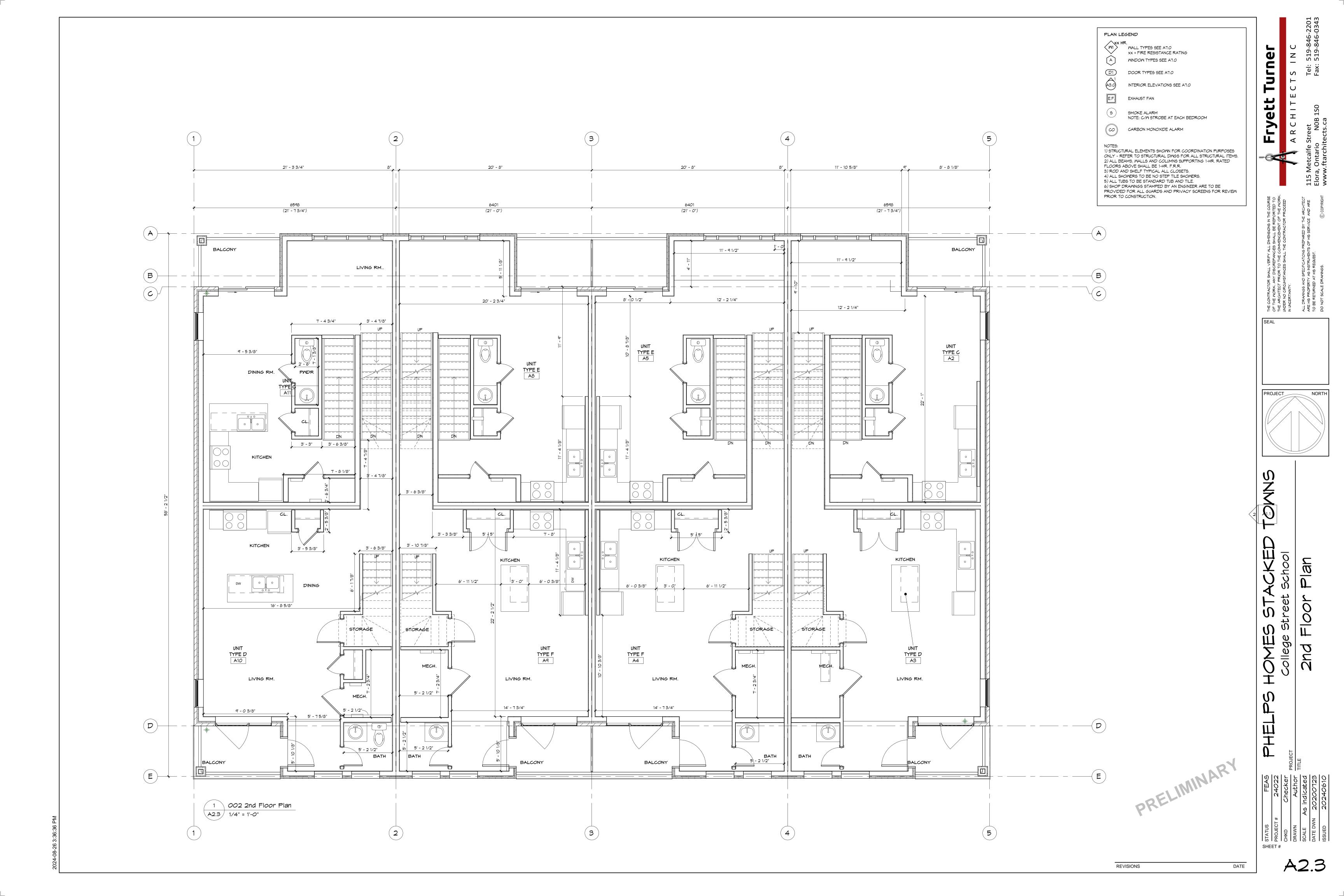

5 (c. *)

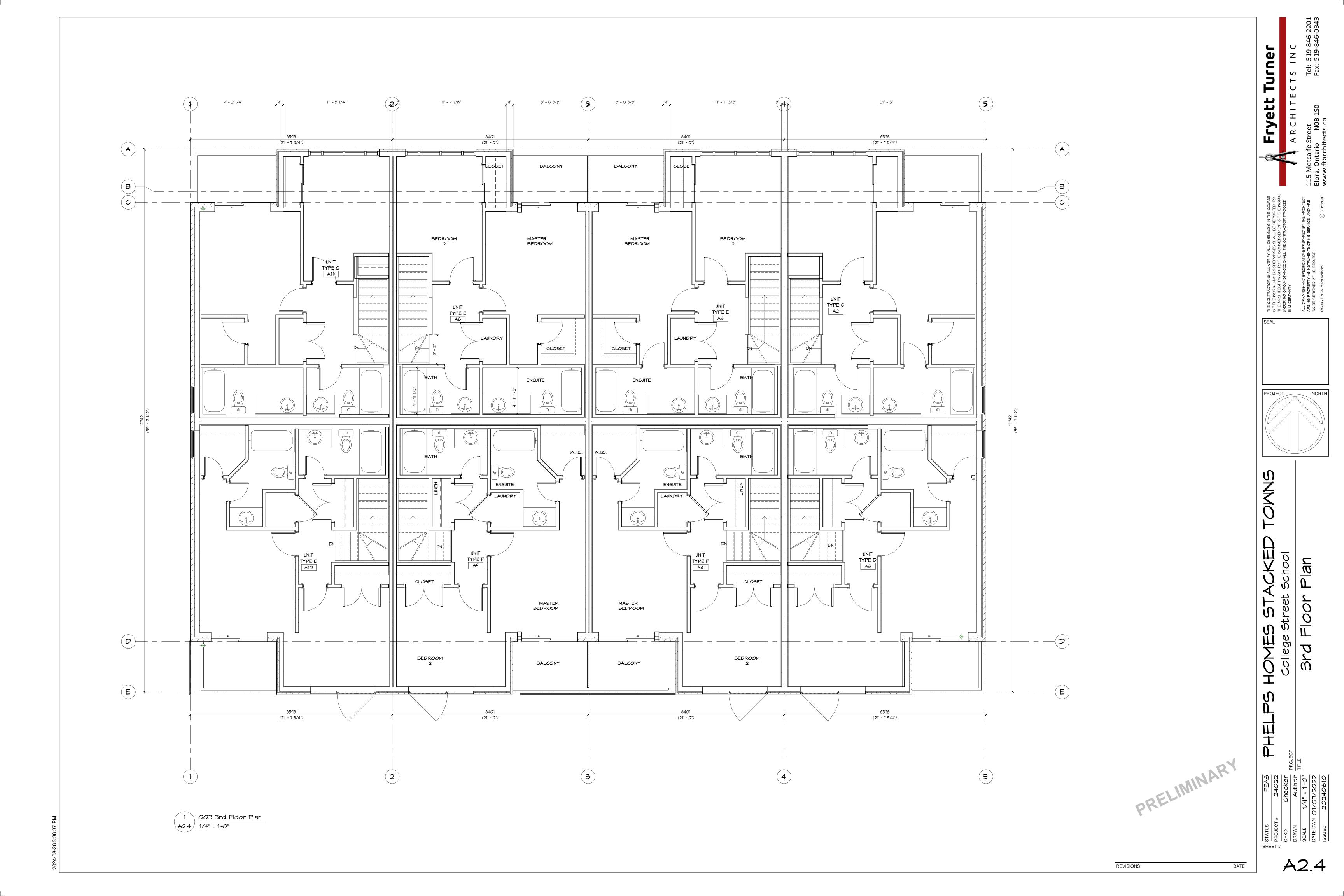






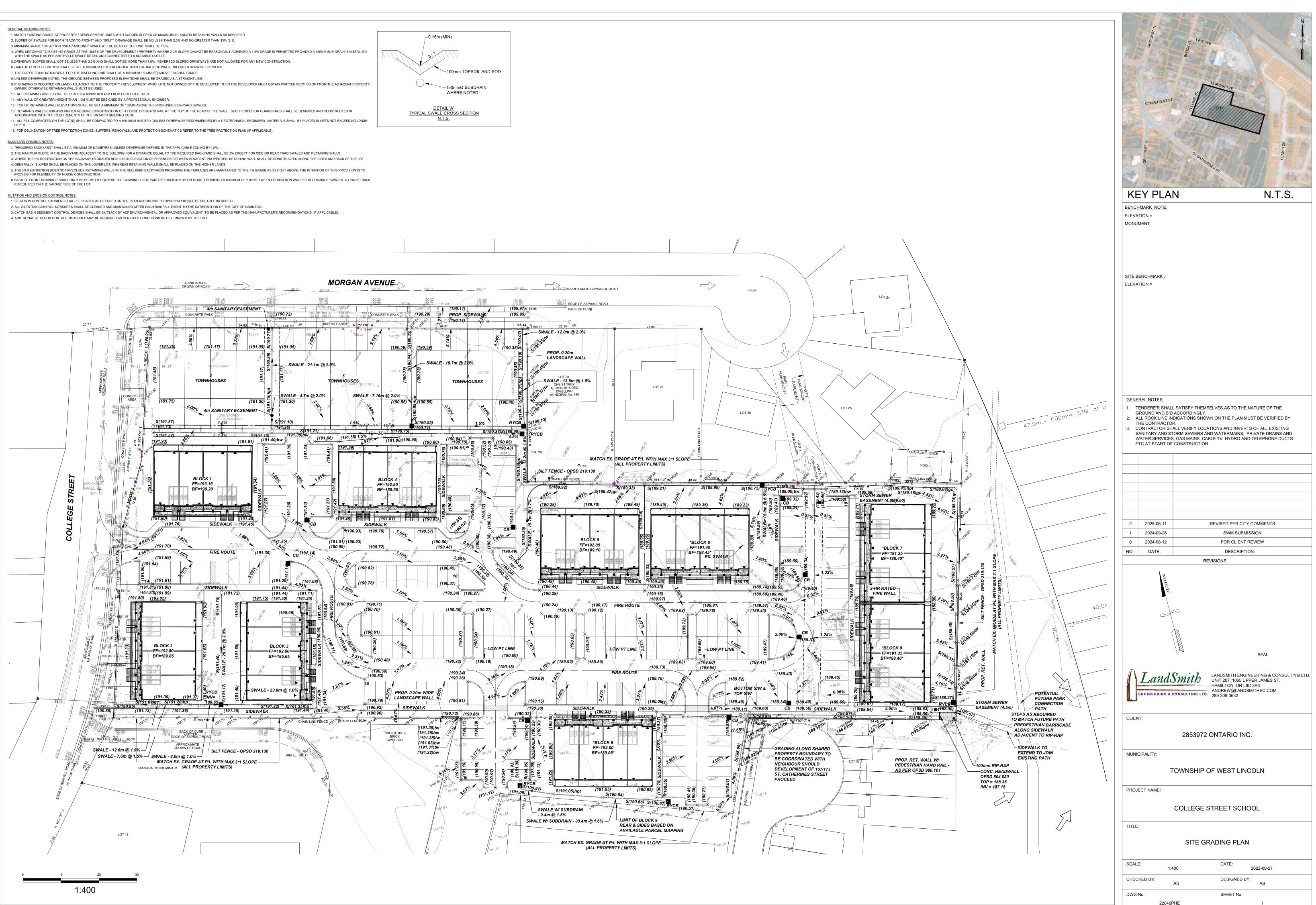


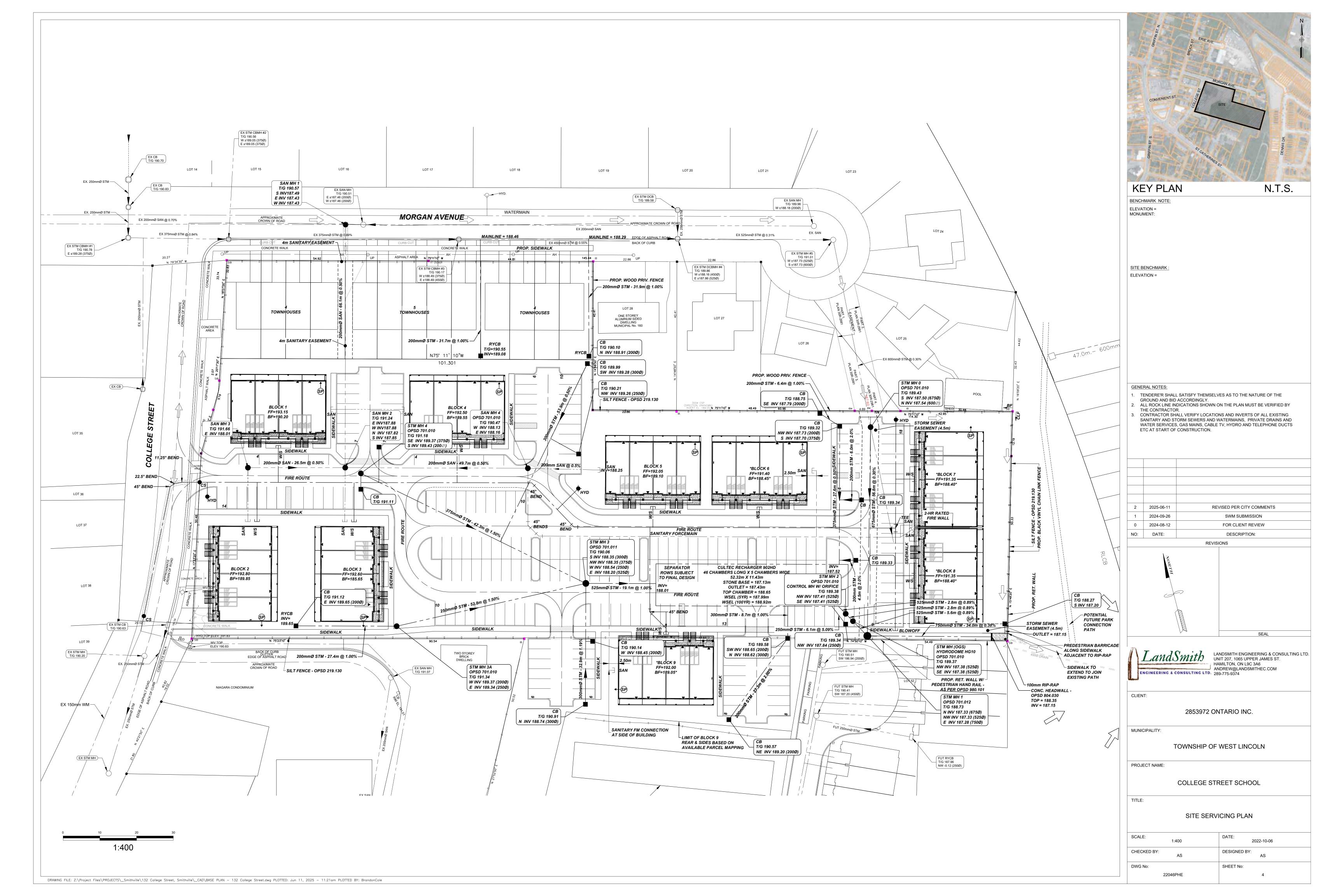

4-08-26 3:36:3

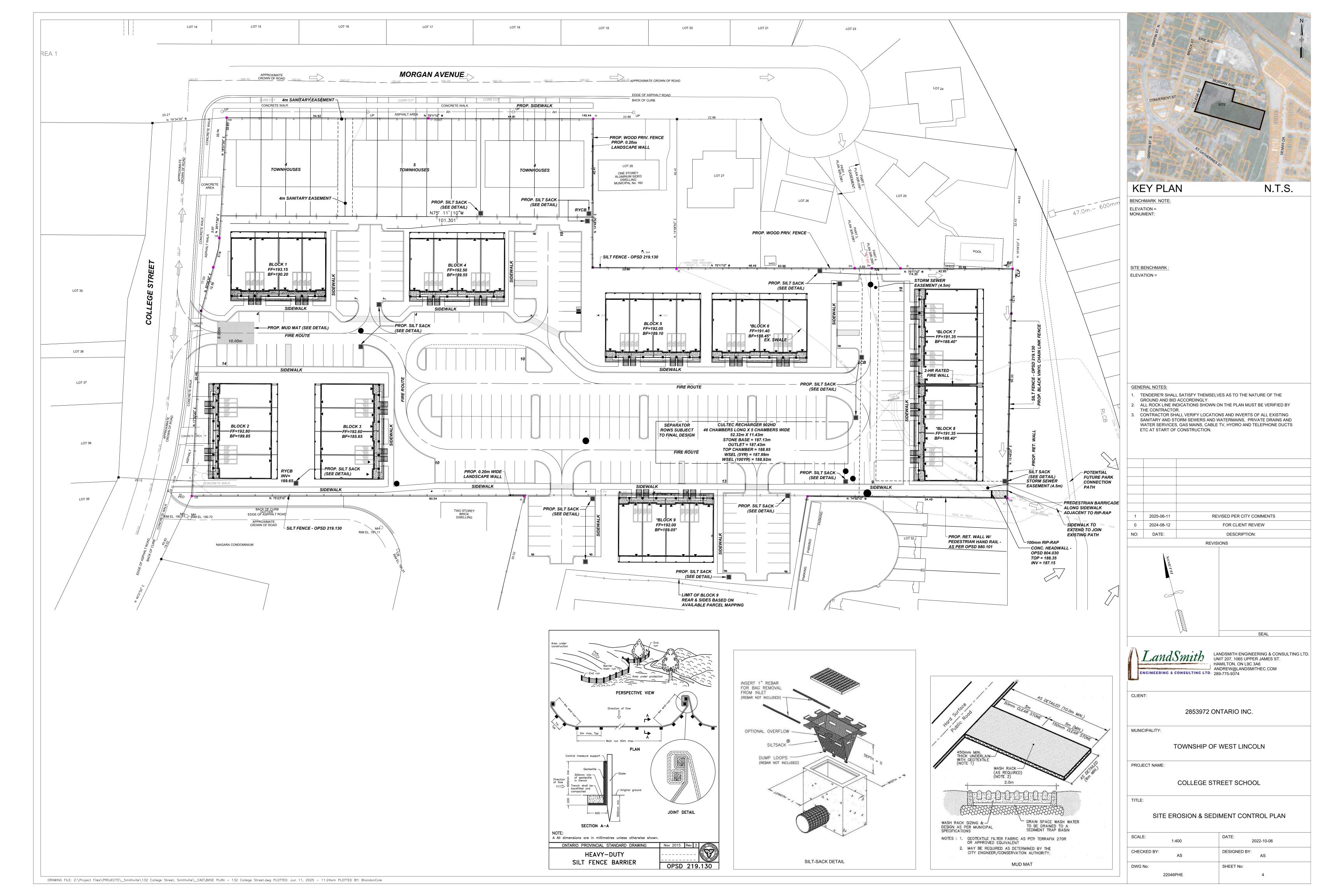


-08-26 3:36:35

2024-08-2




- WITH THE SWALE AS PER SMITHVILLE SWALE DETAIL AND CONNECTED TO A SUITABLE OUTLET.


- ACCORDANCE WITH THE REQUIREMENTS OF THE ONTARIO BUILDING CODE.

- PROVIDE FOR FLEXIBILITY OF HOUSE CONSTRUCTION.

DRAWING FILE: Z:\Project Files\PROJECTS_Smithville\132 College Street, Smithville_CAD\BASE PLAN - 132 College Street.dwg PLOTTED: Jun 11, 2025 - 11:19am PLOTTED BY: BrandonCole

Domestic Water Demand Calculations

Fire Flow Requirement Calculations

Figure F1: Fire Protection Plan

Figure 3.A.8: Smithville Existing Max Day Demand Pressure (Region of Niagara, 2016 MSP)

Figure 3.A.9: Smithville Existing System Fire Flow (Region of Niagara, 2016 MSP)

DOMESTIC WATER USEAGE REQUIREMENTS

Project: 132 COLLEGE STREET, SMITHVILLE Method: Fixture Unit Method, Per OBC Table 7.6.3.2.A

Fixtures: The number of fixtures was estimated based on the Floor Plans provided by Fryett Turner Architects Inc. dated August 26, 2024, and Capponi Lacroix Design Group Ltd. dated March 2017.

<u>Amount</u>	Fixture Type	Fixture Units Per	<u>Total</u>
327	Private Bathroom Group	3.6	1177.2
157	Dishwasher	1.4	219.8
157	Kitchen Sink	1.4	219.8
157	Clothes Washer	1.4	219.8
26	Lavatory	0.7	18.2
85	Water Closet	2.2	187
	Total:		2041.8

1 - Reference Table 7.6.3.2.A, Ontario Building Code

Hydraulic Load: Fixture units are then transferred to Hydaulic Load based on Ontario Building Code Table 7.4.10.5.

Column 1	Column 2	Column 3	Column 4
Fixture Units in service	Max Drainage Rate (Gal/m)		
	Col. 1	Col. 1 × 10	Col. 1 × 100
100	53	174	900
90	51	164	835
80	49	153	750
70	47	140	680
60	44	128	600
50	41	115	520
40	38	102	435
30	33	88	350
20	27	72	262
10	21	53	174

Maximum hydraulic load is estimated to be 266 Imperial Gallons / Minute

2042 Fixture Units = 266 Imp Gal/min = 20.15 Lps

The estimated maximum hydraulic load for the proposed development is 20.15 Liters per second.

Date: 2024-08-07

FIRE FLOW DEMAND REQUIREMENTS

Project: 132 COLLEGE STREET, SMITHVILLE

Method: OFM-TG-03-1999

FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Formula:

 $Q = K \times V \times S_{Tot}$

Where:

- Q = minimum supply of water in litres K = water supply coefficient (Table 1)
- V = total building volume in cubic meters
- S_{Tot} = total of spacial coefficient tables

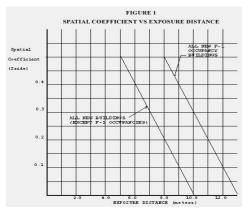
Volume (V)

Middle Block (fronting Morgan Avenue)

Ground Floor Area:	429.14 (sq.m)
Height:	6 (m)
Building Volume:	2574.84 (cu.m)

Water Supply Coefficient (K)

K: 18


OBC Part: C (Residential)

Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

Spacial Coefficients (S)

	Dis	tance
S_1	0	38.0 (North)
S_2	1.06	2.4 (East)
S_3	0	15.3 (South)
S_4	0.9	4 (West)

 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4 = 2.96$

<u>Q =</u>	137,187
Required Flow Rate =	4,500 75

,500 L / Min 75 L / Sec

Table 2: Minimum Water Supply Flo	w Rates						
Building Code, Part 3 Buildings	Required Minimum Water Supply Flow Rate (L/min.)						
One-storey building with building area not exceeding 600m² (excluding F-1 occupancies)	1800						
All other buildings	$\begin{array}{l} 2700 \; (\text{If } \mathbf{Q} \leq 108,000L)^{(1)} \\ 3600 \; (\text{If } \mathbf{Q} > 108,000L \; \text{and} \leq 135,000L)^{(1)} \\ 4500 \; (\text{If } \mathbf{Q} > 135,000L \; \text{and} \leq 162,000L)^{(1)} \\ 5400 \; (\text{If } \mathbf{Q} > 162,000L \; \text{and} \leq 190,000L)^{(1)} \\ 6300 \; (\text{If } \mathbf{Q} > 190,000L \; \text{and} \leq 270,000L)^{(1)} \\ 9000 \; (\text{If } \mathbf{Q} > 270,000L)^{(1)} \end{array}$						

2024-08-07 Date:

FIRE FLOW DEMAND REQUIREMENTS

Project: 132 COLLEGE STREET, SMITHVILLE

OFM-TG-03-1999 Method:

FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Formula:

 $Q = K \times V \times S_{Tot}$

Where:

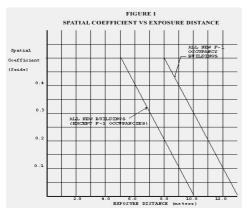
- Q = minimum supply of water in litres K = water supply coefficient (Table 1)
- V = total building volume in cubic meters
- S_{Tot} = total of spacial coefficient tables

Volume (V)

Block 6	
Ground Floor Area:	397.57 (sq.m)
Height:	10.7 (m)
Building Volume:	4254.00 (cu.m)

Water Supply Coefficient (K)

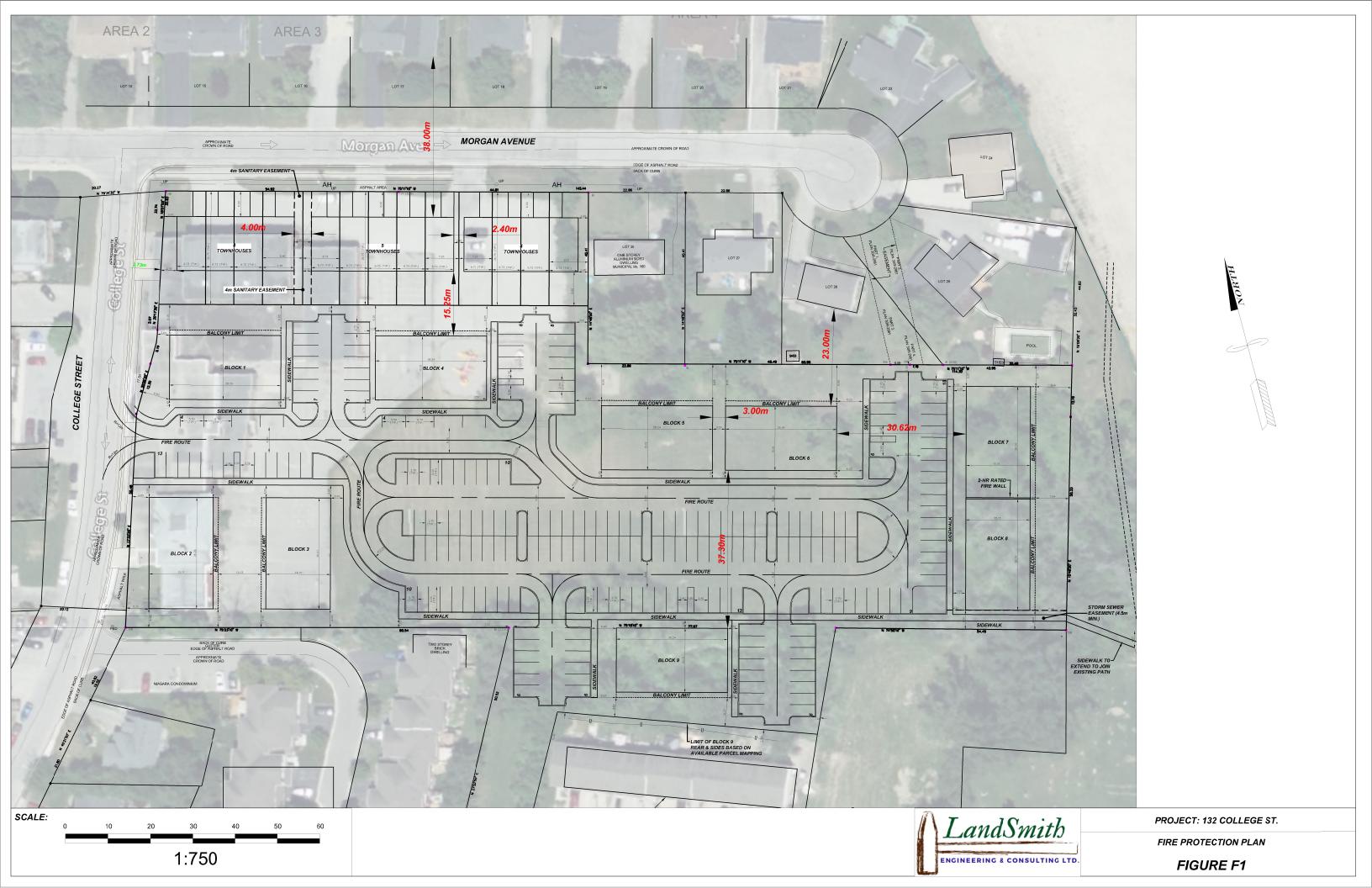
18 К:

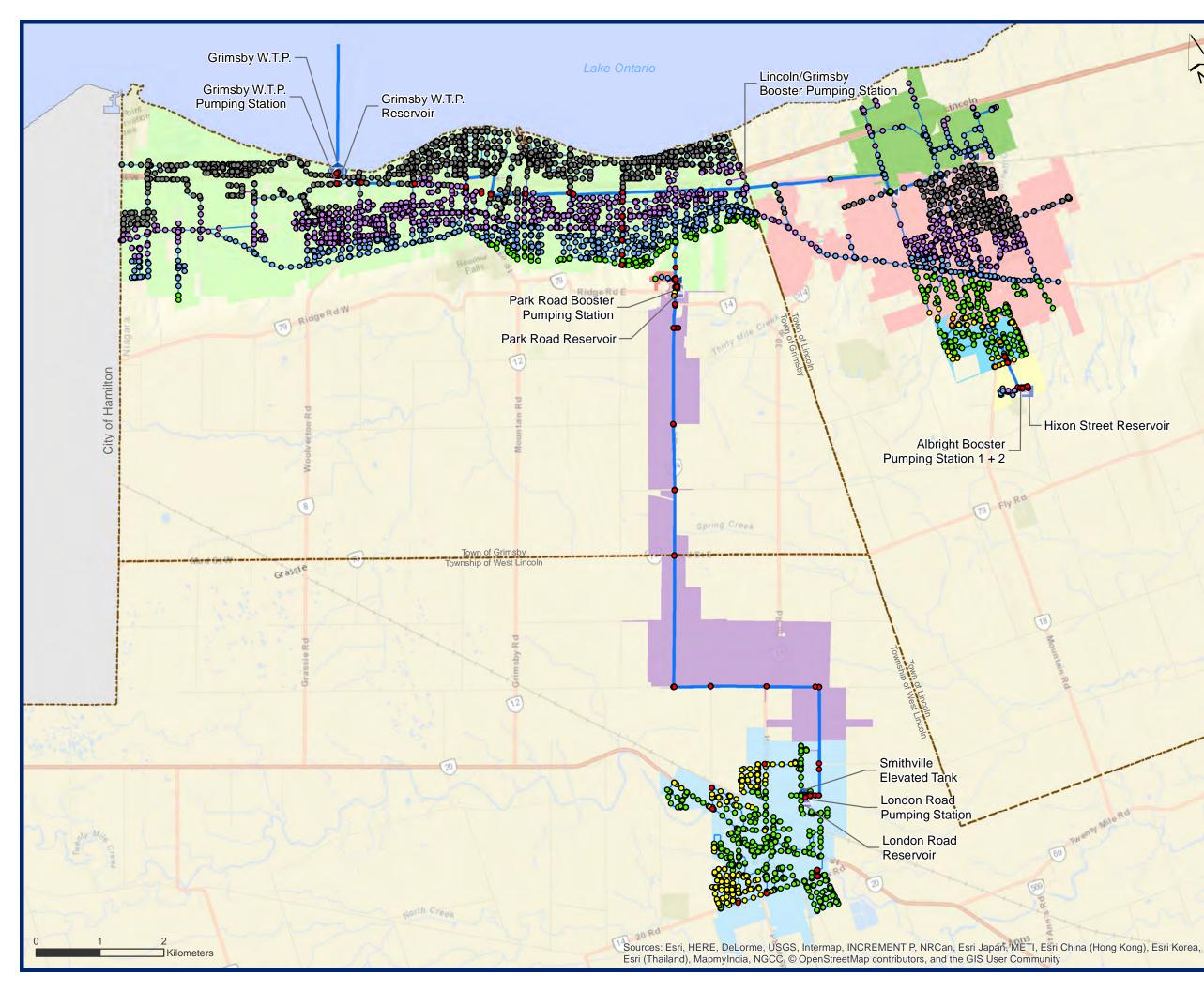

OBC Part: С (Residential)

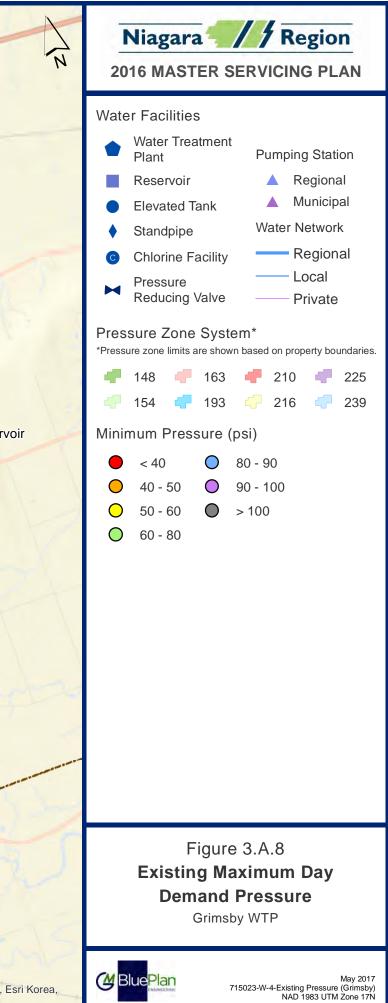
Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

Spacial Coefficients (S)

	Dist	ance
S1	0	23.0 (North)
S ₂	0	30.6 (East)
S ₃	0	37.3 (South)
S_4	1	3 (West)


 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4$ = 2




<u>Q =</u>	153,144	
Required Flow Rate =	4,500	
	75	

L / Min L / Sec

Building Code,	Required Minimum Water Supply Flow						
Part 3 Buildings	Rate (L/min.)						
One-storey building with building area not exceeding 600m² (excluding F-1 occupancies)	1800						
All other buildings	2700 (If $\mathbf{Q} \le 108,000L$) ⁽¹⁾						
	3600 (If $\mathbf{Q} > 108,000L$ and $\leq 135,000L$) ⁽¹⁾						
	4500 (If $\mathbf{Q} > 135,000L$ and $\leq 162,000L$) ⁽¹⁾						
	5400 (If $\mathbf{Q} > 162,000L$ and $\leq 190,000L$) ⁽¹⁾						
	6300 (If $\mathbf{Q} > 190,000L$ and $\leq 270,000L$) ⁽¹⁾						
	9000 (If Q > 270,000L) ⁽¹⁾						

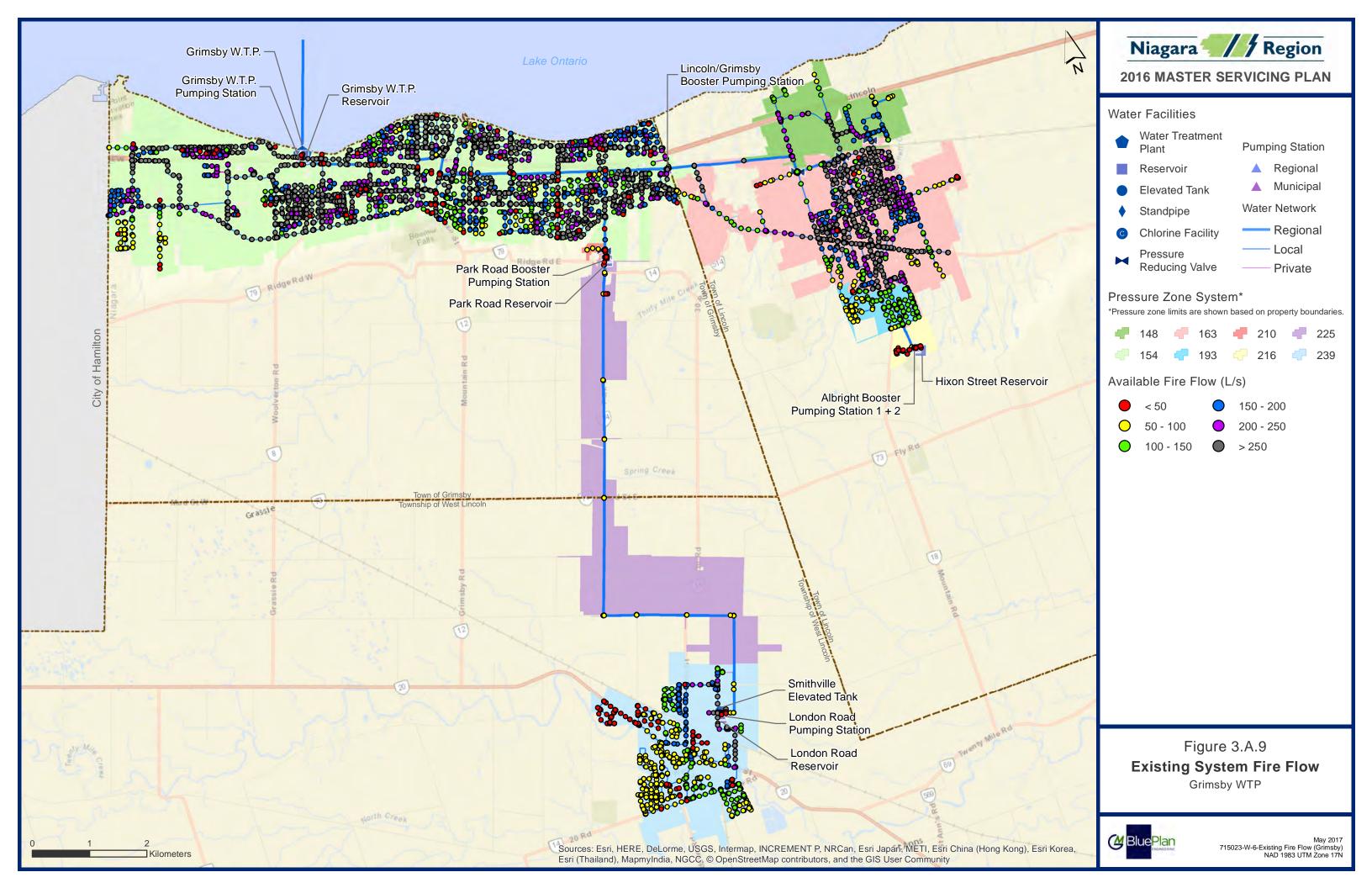


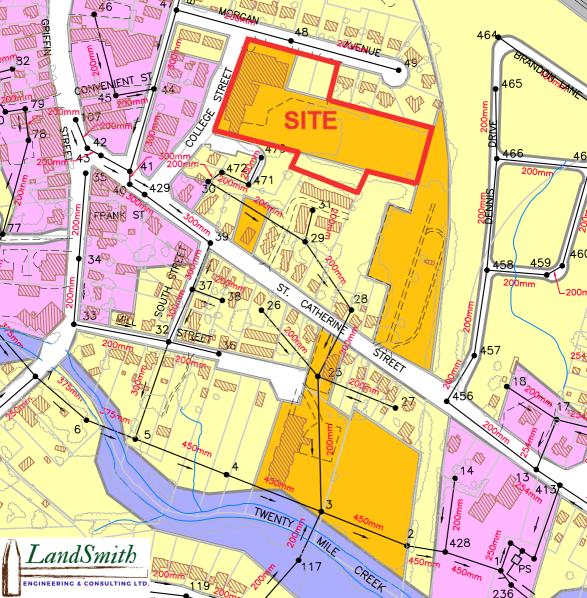
Figure S1: Smithville Existing Sanitary Sewers

132 College Street, Smithville - Upstream Sanitary Area

Sanitary Drainage Area Plan

Post-Development Sanitary Sewer Design Sheet

Morgan Avenue Sanitary Sewer Plan & Profile

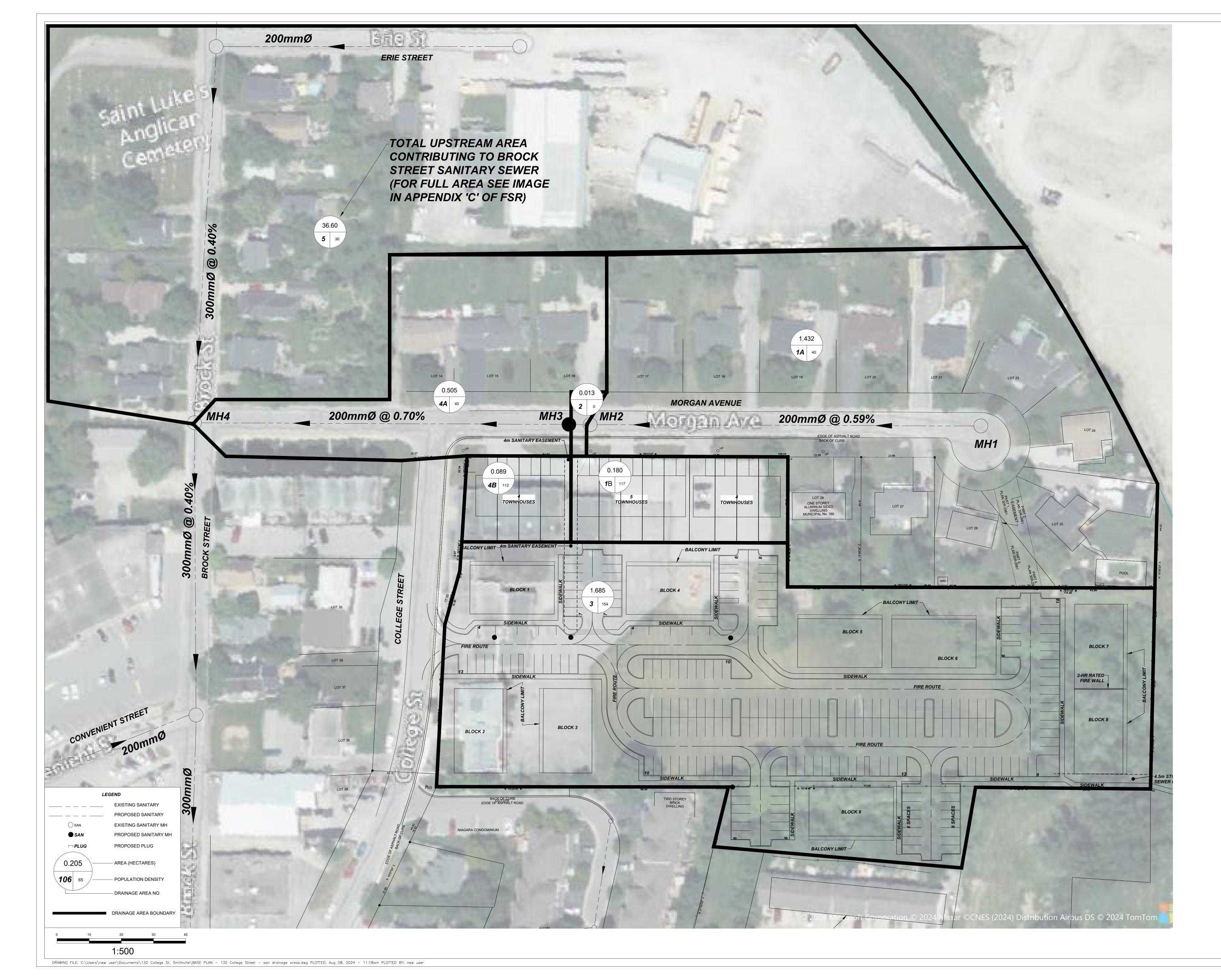

Sanitary Grinder Pump Stations by E/One

- Servicing Plan
- Preliminary Design Analysis
- WH484/WR484 Detail Sheets
- Sanitary Grinder Pump Performance Curve

FIGURE S1: SMITHVILLE EXISTING SANITARY SEWERS

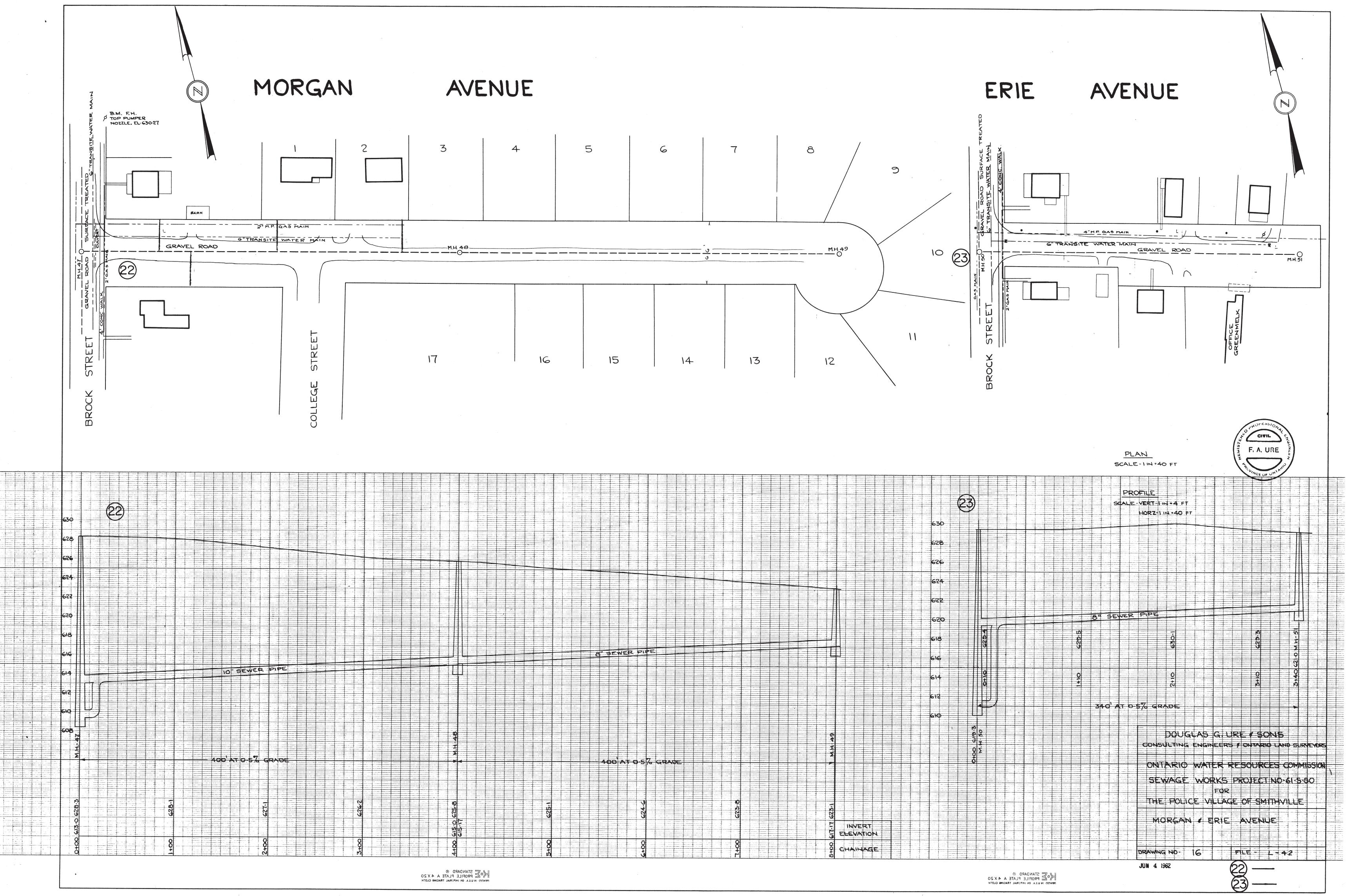
(IMAGE REFERENCED FROM: TOWNSHIP OF WEST LINCOLN WASTEWATER CONVEYANCE SYSTEM - FILE NO. TP112128, DRAWING NO. B1, PREPARED BY AMEC)

EBIE AVE

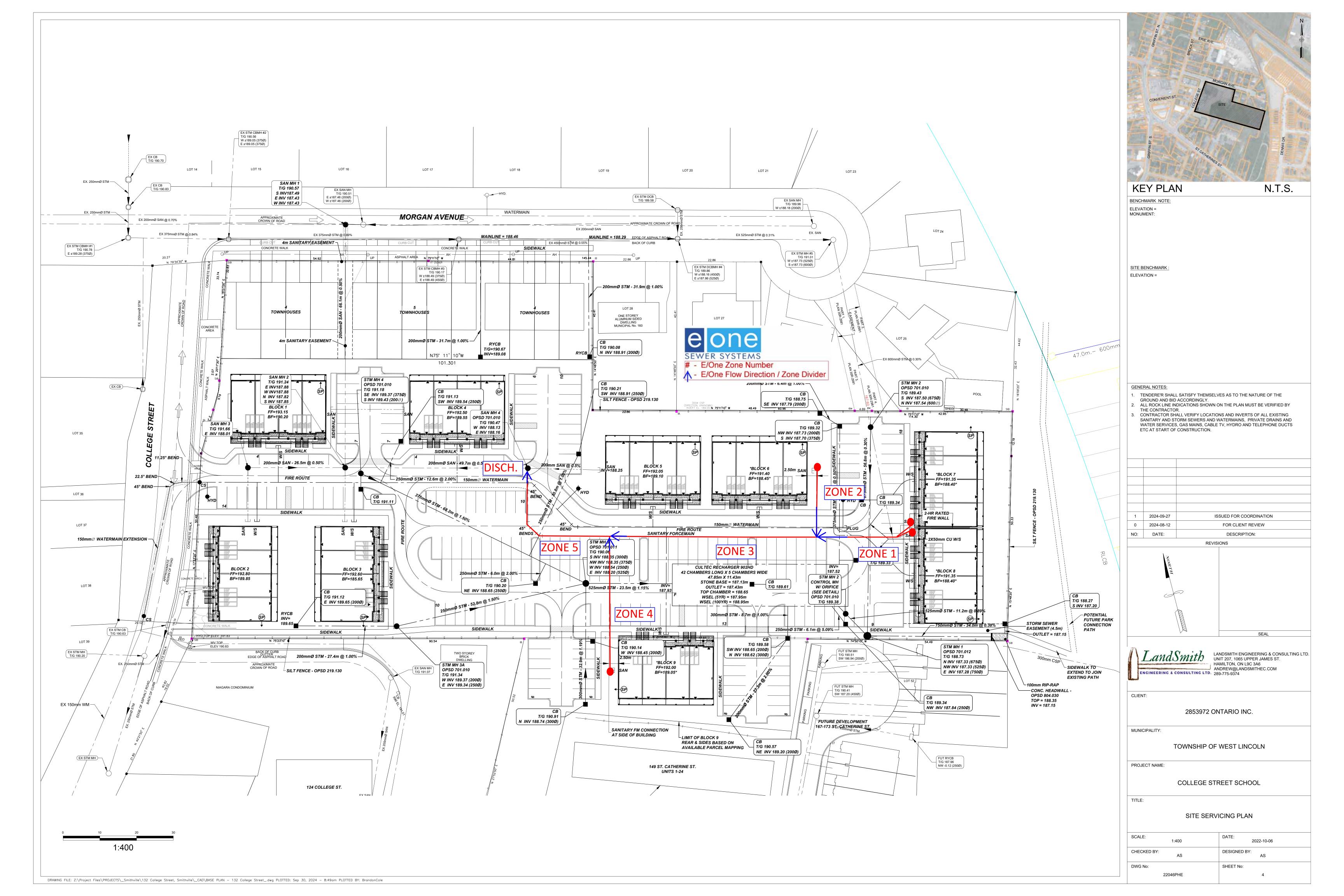

4

98

55


Q Find address or place • -+ ۲ 10 2 Measurement ÷ → 🔠 | Hectares 🔻 Measurement Result pring Creek Roac 36.6 Hectares Spring Creek Stanpak Clear Press CTRL to enable snapping Skyway Road St. Martin Elementary Smits Co ion Cemeter

Smithville, 132 College Street, Upstream Sanitary Area



	GRIFFIN ST. N.	ERIE A	VE			
ALL			MORGANAVE			
	CONVENIENT ST	Contese 51	SITE		Territoria -	
	GRIFFIN ST. S.	STCATHE		Ch	DENNIS DR.	
KE	EY PLA		WES ST.	9// N	I.T.S.	-
	RAL NOTES:					
1. TI G 2. A	ENDERE'R SHALI ROUND AND BID LL ROCK LINE IN	L SATISFY THEM ACCORDINGLY. DICATIONS SHO				
1. TI G 2. A TI 3. C S, W	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTO ONTRACTOR SH ANITARY AND ST /ATER SERVICES	ACCORDINGLY. DICATIONS SHO	WN ON THE PLAI ATIONS AND INV ND WATERMAIN \BLE TV, HYDRO	N MUST BE VE ERTS OF ALL I S, PRIVATE DI	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S, W	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTO ONTRACTOR SH ANITARY AND ST /ATER SERVICES	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, CA	WN ON THE PLAI ATIONS AND INV ND WATERMAIN \BLE TV, HYDRO	N MUST BE VE ERTS OF ALL I S, PRIVATE DI	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S, W	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTO ONTRACTOR SH ANITARY AND ST /ATER SERVICES	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, CA	WN ON THE PLAI ATIONS AND INV ND WATERMAIN \BLE TV, HYDRO	N MUST BE VE ERTS OF ALL I S, PRIVATE DI	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S, W	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTO ONTRACTOR SH ANITARY AND ST /ATER SERVICES	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, CA	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I.	N MUST BE VE ERTS OF ALL I S, PRIVATE DI	RIFIED BY EXISTING RAINS AND	
1. TI G 2. Al TI 3. C: W E	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTO ONTRACTOR SH ANITARY AND ST IATER SERVICES TC AT START OF	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A 5, GAS MAINS, CA CONSTRUCTION	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I.	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S W E	ENDERE'R SHALI ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST ANITARY AND ST TC AT START OF TC AT START OF	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A 5, GAS MAINS, CA CONSTRUCTION	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. 	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S W E	ENDERE'R SHALI ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST ANITARY AND ST TC AT START OF TC AT START OF	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A 5, GAS MAINS, CA CONSTRUCTION	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. 	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO	RIFIED BY EXISTING RAINS AND	
1. TI G 2. A TI 3. C S W E	ENDERE'R SHALI ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST ANITARY AND ST TC AT START OF TC AT START OF	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A 5, GAS MAINS, CA CONSTRUCTION	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. 	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO	RIFIED BY EXISTING RAINS AND	
	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE:	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A 5, GAS MAINS, CA CONSTRUCTION	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL	RIFIED BY EXISTING RAINS AND DNE DUCTS	NGLTI
	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE:	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, C/ CONSTRUCTION R R R Smith	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL NGINEERING & UPPER JAME UPPER JAME UPPER JAME	RIFIED BY EXISTING RAINS AND DNE DUCTS	NGLTI
1. TI G 2. Al TI 3. C, W E	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE:	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, C/ CONSTRUCTION R R R Smith	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL NGINEERING & UPPER JAME UPPER JAME UPPER JAME	RIFIED BY EXISTING RAINS AND DNE DUCTS	NG LTI
1. TI G 2. Al TI 3. C, W E	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST IATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE: CIPALITY:	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, C/ CONSTRUCTION R R R Smith	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS LANDSMITH EI UNIT 207, 1065 HAMILTON, ON ANDREW@LA 289-775-9374	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL SEAL NGINEERING & OUPPER JAME I L9C 3A6 NDSMITHEC.C	RIFIED BY EXISTING RAINS AND DNE DUCTS	NG LTI
	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST IATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE: CIPALITY:	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, C/ CONSTRUCTION R R R Smith 2853972 COWNSHIP	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS LANDSMITH EI UNIT 207, 1065 HAMILTON, ON ANDREW@LA 289-775-9374	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL NGINEERING & UPPER JAME J L9C 3A6 NDSMITHEC.C	RIFIED BY EXISTING RAINS AND DNE DUCTS	NGLTI
	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE: CIPALITY: CIPALITY: T	ACCORDINGLY. DICATIONS SHO ALL VERIFY LOC ORM SEWERS A GAS MAINS, C/ CONSTRUCTION R R Smith 2853972 COWNSHIP 132 COL	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS LANDSMITH E UNIT 207, 1065 HAMILTON, ON ANDREW@LA 289-775-9374 ONTARIO I OF WEST L	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL SEAL NGINEERING & UPPER JAME J L9C 3A6 NDSMITHEC.C	RIFIED BY EXISTING RAINS AND DNE DUCTS	NGLTI
1. TI G 2. Al TI 3. CC W E 0 NO: 0 NO: CLIEN MUNIC	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-08-07 DATE: CIPALITY: CIPAL	ACCORDINGLY. DICATIONS SHO R. ALL VERIFY LOC ORM SEWERS A S, GAS MAINS, C/ CONSTRUCTION R R R Smith 2853972 COWNSHIP	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS LANDSMITH EI UNIT 207, 1065 HAMILTON, ON ANDREW@LA 289-775-9374 ONTARIO I OF WEST L LEGE STRI LEGE STRI AINAGE AF	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL SEAL NGINEERING & UPPER JAME J L9C 3A6 NDSMITHEC.C	RIFIED BY EXISTING RAINS AND DNE DUCTS	
1. TI G 2. A(TI 3. C, W W E	ENDERE'R SHALL ROUND AND BID LL ROCK LINE IN HE CONTRACTOO ONTRACTOR SH ANITARY AND ST VATER SERVICES TC AT START OF 2024-08-07 DATE: 2024-07 DATE: 2024-07	ACCORDINGLY. DICATIONS SHO ALL VERIFY LOC ORM SEWERS A GAS MAINS, C/ CONSTRUCTION R R Smith 2853972 COWNSHIP 132 COL	WN ON THE PLAI ATIONS AND INV ND WATERMAIN BLE TV, HYDRO I. ISSUED DESCRI EVISIONS LANDSMITH E UNIT 207, 1065 HAMILTON, ON ANDREW@LA 289-775-9374 ONTARIO I OF WEST L	N MUST BE VE ERTS OF ALL I S, PRIVATE DI AND TELEPHO WITH FSR PTION: SEAL NGINEERING & UPPER JAME UPPER JAME UPPER JAME UPPER JAME UPPER JAME ALSO SEAL SEAL	RIFIED BY EXISTING RAINS AND DNE DUCTS	

								POST-	DEVELO	PMENT SANIT	ARY SEWER DESI	GN SHEET								
ΛI	LandSm	ith				- average per ca	anita daily flay	, 240		P = population			DATE Designed Checked				22046Phe 132 College S	treet, Smithville		_
ENG	GINEERING & CONSU	Low Density Vedium Density High Denisty	= 2.3 persons	s per unit		p = unit of pop Q(p) Q(i)		v 40.00 tion flow (L/s eous flow (L/	-) s)	$M = peaking factoP = p x # units / 10M = 5 / (P/1000)^0Q = (P x q x M) / 8filtration Allowance:$	000 0.20 6.4	L/s/ha				SHEET No.: 1	_ OF	1	-	
	LOCATION	N			INDIVIDUAL		CUMUL	ATIVE	1							PROPOSED SA	ANITARY SEW	ER		
Area #	STREET	FROM MH	TO MH	POP	AREA (ha)	Persons/Ha.*	POP	TOTAL AREA (ha)	PEAKING FACTOR (M)		PEAK EXTRANEOUS FLOW, Q(i) (L/s)	PEAK DESIGN FLOW, Q(d) (L/s)	LENGTH (m)	PIPE SIZE DIAMETER (mm)	GRADE (%)	MANNING'S n	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	ACTUAL VELOCITY (m/s)	PERCENT FULL
1A	Morgan Avenue	1	2	57	1.43	40	57	1.43	5.00	0.80	0.41	1.21								
1B	Morgan Avenue	1	2	21	0.18	117	78	1.61	5.00	1.09	0.46	1.55	122.6	200	0.59%	0.013	25.2	0.80	0.43	6.1%
2	Morgan Avenue	2	3	0	0.01	0	78	1.63	5.00	1.09	0.46	1.55	4.8	200	0.70%	0.013	27.4	0.87	0.46	5.7%
3	Morgan Avenue	3	-	260	1.69	154	338	3.31	5.00	4.70	0.95	5.64								
4A	Morgan Avenue	3	4	20	0.51	40	358	3.82	5.00	4.98	1.09	6.07								
4B	Morgan Avenue	3	4	10	0.09	112	368	3.90	5.00	5.12	1.12	6.23	117.6	200	0.70%	0.013	27.4	0.87	0.67	22.7%
5	Brock Street	-	4	1098	36.60	30	1098	36.60	4.91	14.97	10.47	25.44	115.0	300	0.40%	0.013	61.2	0.87	0.79	41.6%
ALL	Brock Street	4	-				1466	40.50	4.63	18.87	11.58	30.45	88.0	300	0.40%	0.013	61.2	0.87	0.82	49.8%
31	0 persons/hectare for Area 0 persons/hectare for Area .8 persons/unit for Site apa .3 persons/unit for Site tow	5 ortments (144 un																		

8		S S S S S S		INVERT ELEVATION CHAINAGE
S S S S S S S S S S S S S S S S S S S			S. S. S.	
	400 AT 0-5 7		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR	
				612
	8" SEWER PIP			614
				62
	Normal Second Second<			624
				63

Environment One Corporation

Pressure Sewer Preliminary Cost and Design Analysis For College St, ON

Prepared For:		
Tel:	ON	Canada
Fax:		
Prepared By: M. Crowley		
October 22, 2024		

Y:\SSB\SSB Engineering Data\AE Projects\College St, ON\College St, ON.EOne

College St, ON

Prepared by : M. Crowley

On: October 22, 2024

Notes :

Analysis based upon drawings and data provided. Station recommendations are preliminary.

LPD values impact retention times only, not line sizing or hydraulics. GP laterals to be 1.25".

Analysis valid only with pipe type listed.

General recommendations for valve placement are: clean out valves at intervals of approximately 305m and at branch ends and junctions; isolation valves at branch junctions; and air release valves at peaks of 8m or more and/or at intervals of 600 to 800 m. Lateral kits comprised of a ball and check valve are required to be installed between the pump discharge and street main on all installations. Laterals should be located as close to the public right of way as possible.

Quantities of grinder pumps, pipe, and valves are indicated on the cost page. The model of grinder pump(s) indicated is based upon the initial information provided to us but may not be the most appropriate for the specific location or requirements of the project. Costs of these items and their installation are best obtained from sources in your region. We recommend you contact your local distributor of Environment One products for additional recommendations.

Budgetary Low Pressure Sewer System Costs

College St, ON

	Quantity	Description	<u>Unit Cost</u>	Installation	Sub Total
Valves	2	Clean Out	\$0.00	0.00	\$0.00
					<u>\$0.00</u>
Pumps	4	Quadplex Grinder Pump Stations	\$0.00	0.00	\$0.00
-	4	Lateral Kits (Includes Ball/Check Valve Assembly)	\$0.00	0.00	\$0.00
	4	Lateral (Boundary) Installation	\$0.00	0.00	\$0.00
	4	Pump/Panel Installation	\$0.00	0.00	\$0.00
				I	<u>\$0.00</u>
Piping	56	2.00" Pipe	\$0.00	0.00	\$0.00
	122	3.00" Pipe	\$0.00	0.00	\$0.00
					<u>\$0.00</u>
Nu	mber of Con	nections <u>8</u>			
	al Per Conn and Total Pe		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		<u>\$0.00</u> <u>\$0.00</u>

Note: The System Costs above are based on piping sized for, and Grinder Pumps manufactured by Environment One Corporation.

PRELIMINARY PRESSURE SEWER -- PIPE SIZING AND BRANCH ANALYSIS

LPS 2000 -- Metric V3

Date : Oct-22-24

College St, ON

Prepared By: M. Crowley

Zone	Number Of Cores	Accumulated	Maximum Number	Maximum	Pipe	Actual	Maximum	Length	Friction	Friction	Accumulated	Maximum	Minimum	Static	Total
Number	Connected	Total Of Cores		Flow In	Size	Pipe ID	Velocity	Of Main	Loss Factor	Loss	Friction Loss	Main	Pump	Head	Dynamic
	This Zone	This Zone	Operations	LPS	(in or mm)	(mm)	(MPS)	This Zone	(M/100 M)	This Zone	(Meters)	Elevation	Elevation	(Meters	Head (M)
Pipe diamete		SDR 11 PE Pipe	\$					240 Volt 60 H			(r inside roughr		
1.00	4	4	4	2.78	3.00	71.78	0.69	26.3		0.18	0.84	190.7	189.7	1.0	1.84
2.00	2	2	2	1.39	2.00	48.69	0.75	18.8		0.24	0.90	190.7	189.6	1.1	2.00
3.00	0	6	4	2.78	3.00	71.78	0.69	56.7	0.69	0.39	0.66	190.7	189.8	0.9	1.56
4.00	2	2	2	1.39	2.00	48.69	0.75	36.7		0.47	0.73	190.7	190.4	0.3	1.03
5.00	0	8	4	2.78	3.00	71.78	0.69	38.8		0.27	0.27	190.7	190.0	0.7	0.97
			-	v	0.00		0.00		0.000						0.01

													1		
				****											*

													1		
										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				****	
				*****						****					
													1		
				****						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
													1		
													1		

PRELIMINARY PRESSURE SEWER -- PIPE SIZING AND BRANCH ANALYSIS

Date : Oct-22-24

College St, ON

Prepared By: M. Crowley

Zone	Accumulated	Existing	Liters Per	Length	Capacity	Average	Average	Average	Accumulated
Number	Total Of Cores	Pipe	100 Lineal	of Zone	of Zone	Daily	Fluid Changes	Retention	Retention
	This Zone	Size	Meters	Meters	Liters	Flow	Per Day	Time (Hr)	Time (Hr)
Pipe diamete	ers used for :	SDR 11 PE F						/Dwelling =	757
1.00	4	3.00	404.67	26.30	106.43	24224	227.61	0.11	0.33
2.00	2	2.00	186.21	18.80	35.01	12112	345.98	0.07	0.30
3.00	6	3.00	404.67	56.70	229.45	36336	158.36	0.15	0.23
4.00	2	2.00	186.21	36.70	68.34	12112	177.23	0.14	0.21
5.00	8	3.00	404.67	38.80	157.01	48448	308.57	0.08	0.08

WH484/WR484

General Features

The model WH484 or WR484 grinder pump station is a complete unit that includes: four grinder pumps, check valve, polyethylene tank, controls, and alarm panel. Designed for higher flow applications where local codes dictate higher storage requirements. The lower portion of the tank has a smaller diameter, tapered down to a dish-shaped bottom. The large tank access opening easily accommodates installation of the grinder pumps and equipment.

- Rated for flows of 7000 gpd (26,498 lpd)
- 486 gallons (1802 liters) of capacity
- · Standard outdoor heights range from 75 inches to 122 inches

The WH484 is the "hardwired," or "wired," model where a cable connects the motor controls to the level controls through watertight penetrations.

The WR484 is the "radio frequency identification" (RFID), or "wireless," model that uses wireless technology to communicate between the level controls and the motor controls.

Operational Information

Motor

1 hp, 1,725 rpm, high torque, capacitor start, thermally protected, 120/240V, 60 Hz, 1 phase

Inlet Connections

4-inch inlet grommet standard for DWV pipe. Other inlet configurations available from the factory.

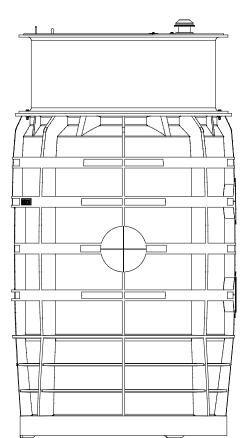
Discharge Connections

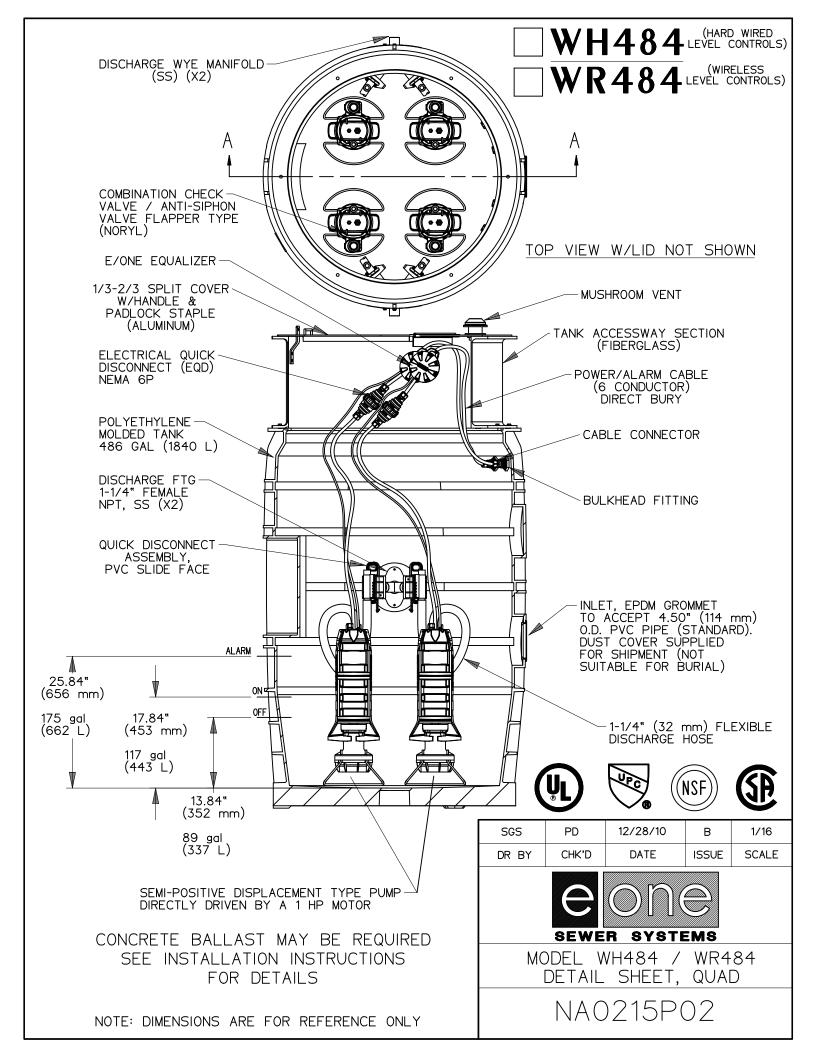
Pump discharge terminates in 1.25-inch NPT female thread. Can easily be adapted to 1.25-inch PVC pipe or any other material required by local codes.

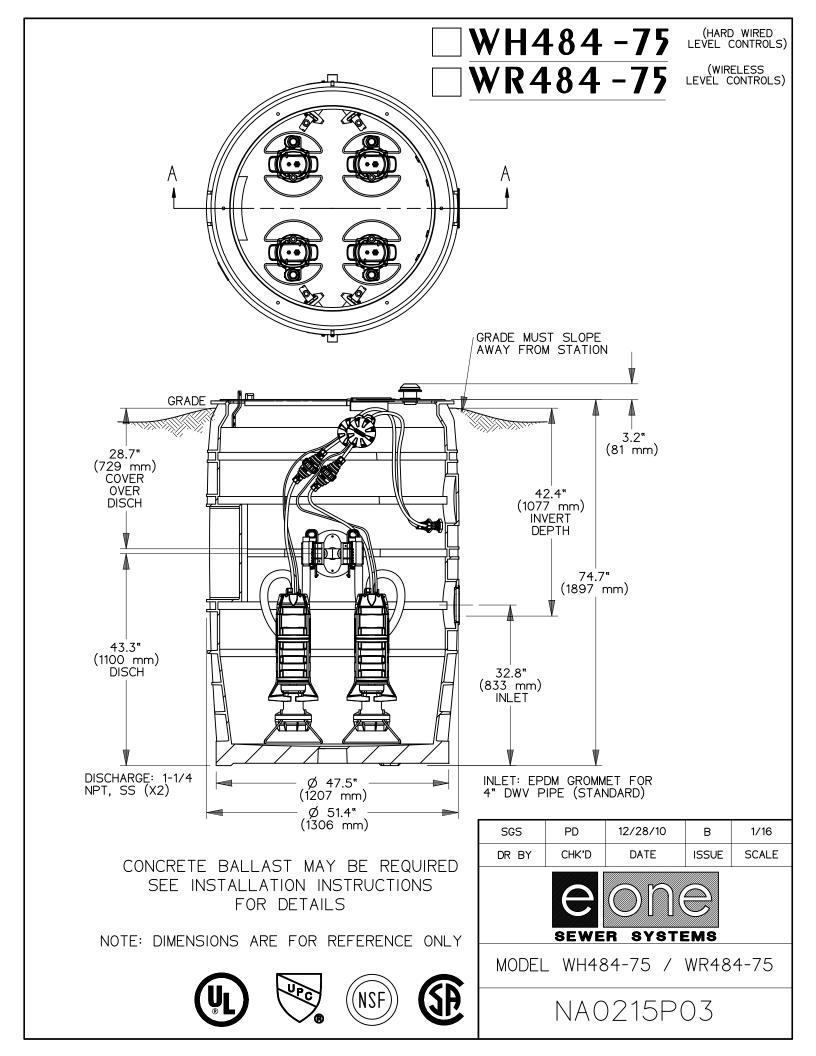
Discharge

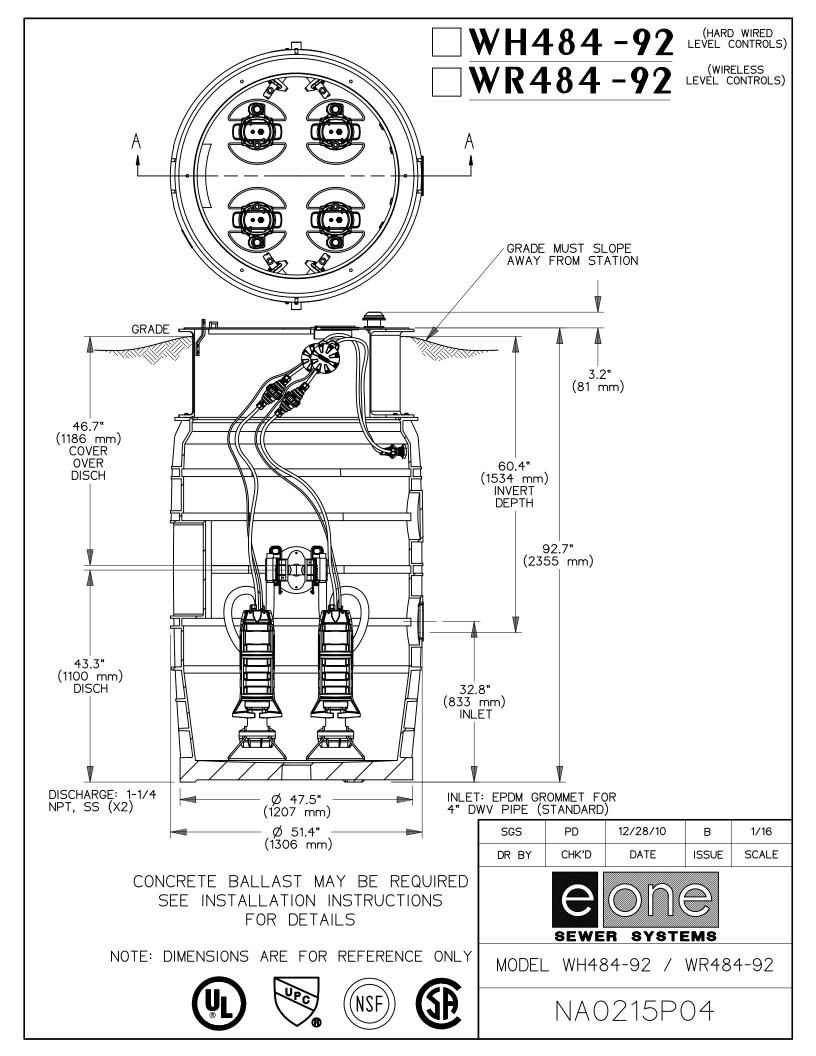
15 gpm at 0 psig (0.95 lps at 0 m)

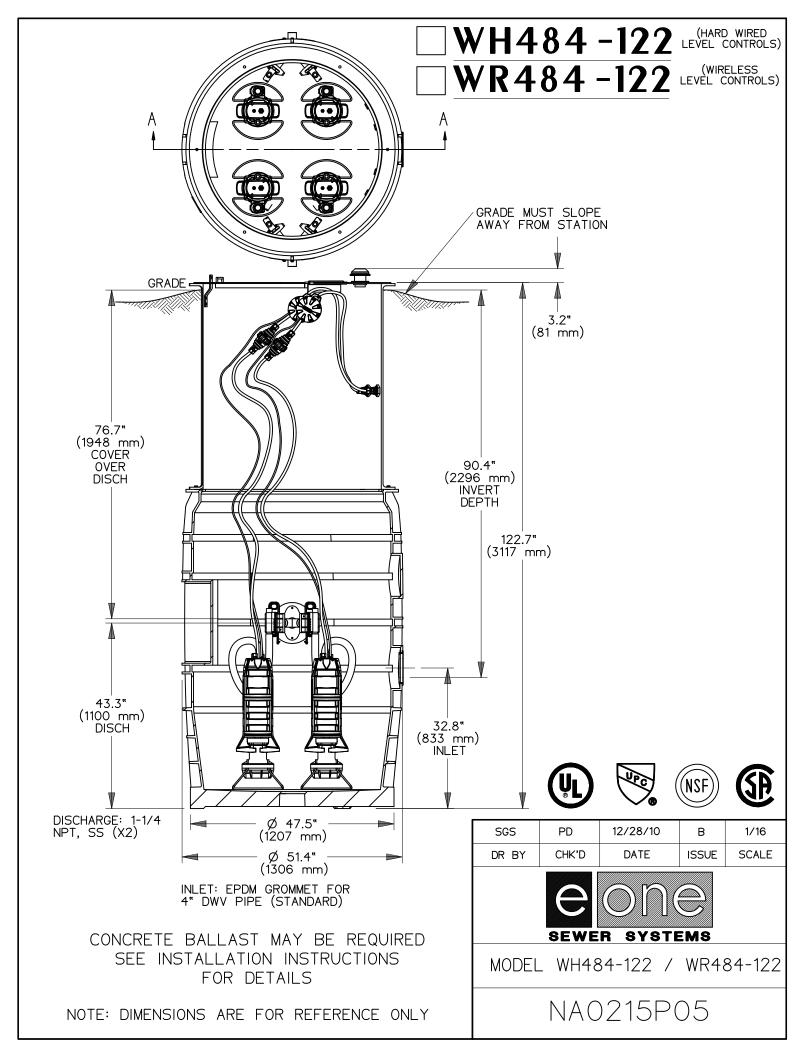
11 gpm at 40 psig (0.69 lps at 28 m)

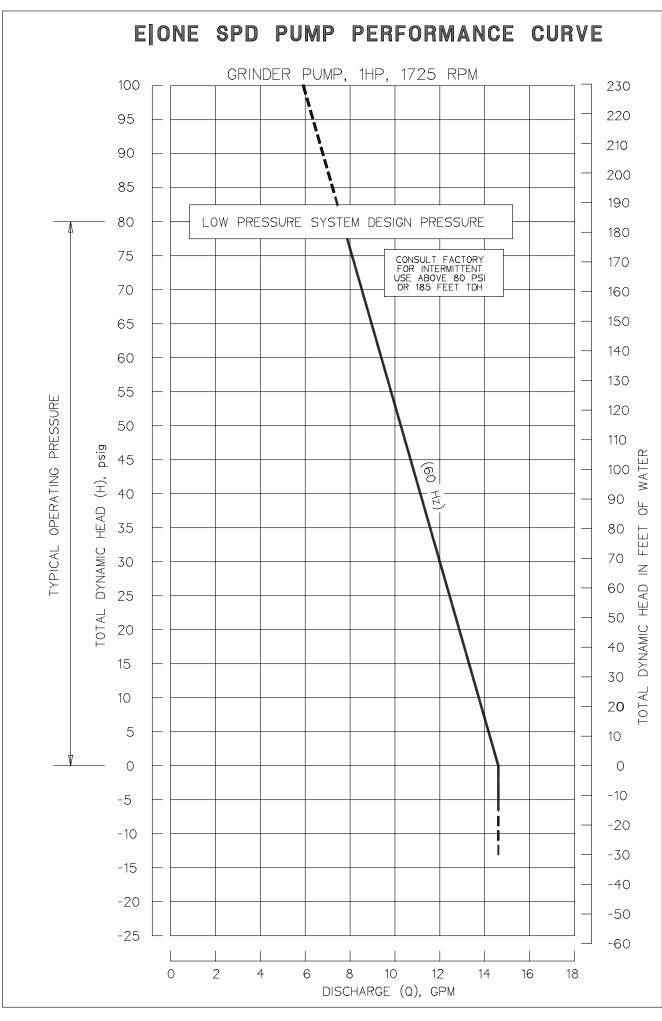

7.8 gpm at 80 psig (0.49 lps at 56 m)


Accessories


E/One requires that the Uni-Lateral, E/One's own stainless steel check valve, be installed between the grinder pump station and the street main for added protection against backflow.


Alarm panels are available with a variety of options, from basic monitoring to advanced notice of service requirements.


The Remote Sentry is ideal for installations where the alarm panel may be hidden from view.



ESD 08-0022 REV. 2, 6/08

Pre-Development Drainage Area Plan - Figure 1

Post-Development Drainage Area Plan - Figure 2

Old Town Gateway Estates Storm Drainage Area Plan by S. Llwellyn & Associates Ltd.

Old Town Gateway Estates As-Built General Services by S. Llwellyn & Associates Ltd.

Storm Sewer Design Sheet - 5-Year

Storm Sewer Design Sheet – 100-Year

MIDUSS v2 Output Files

CULTEC Recharger 902HD Design Sheets

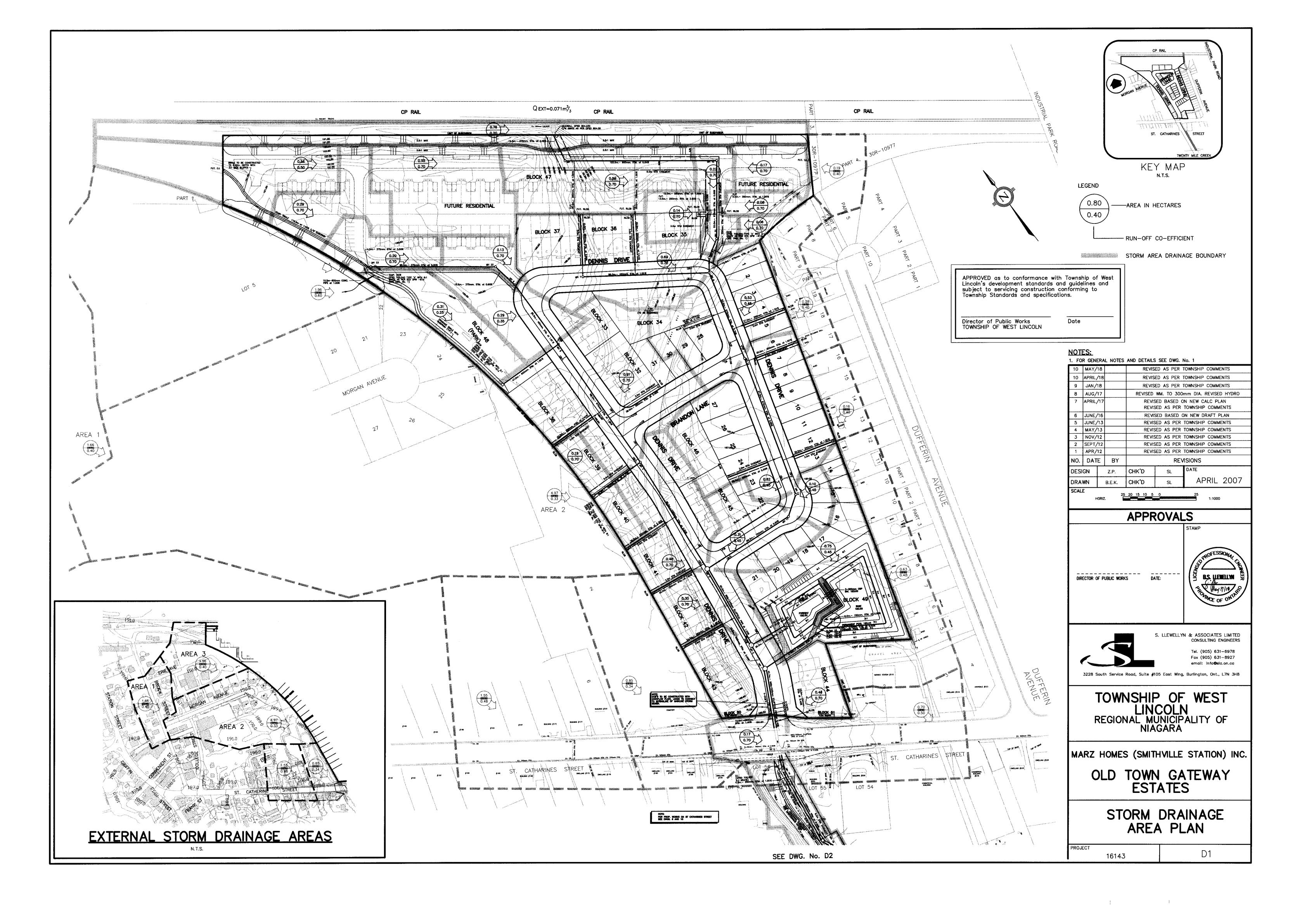
CULTEC Separator Row Filtration System Verification Statement

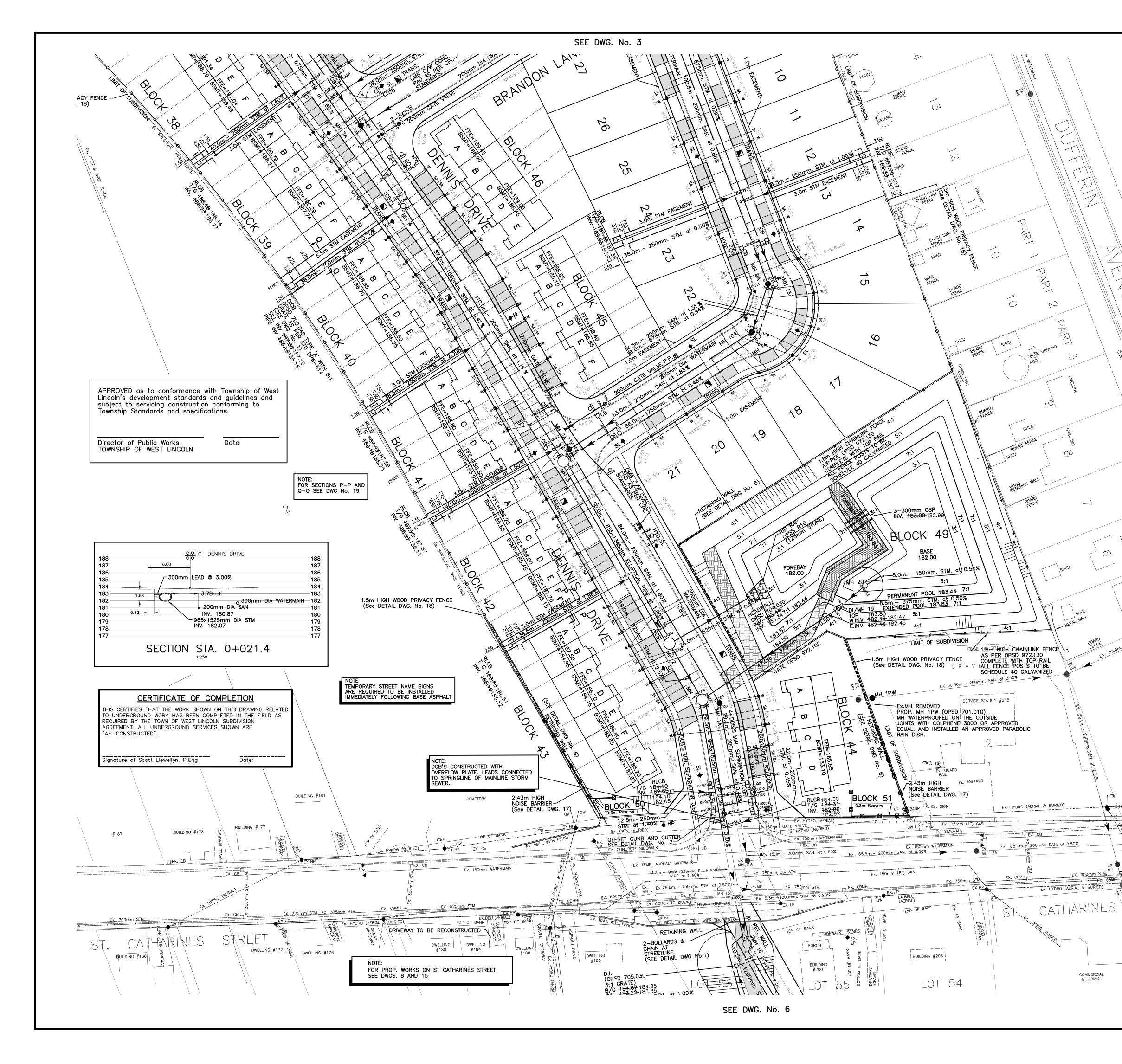
Hydroworks HD Sizing Calculations

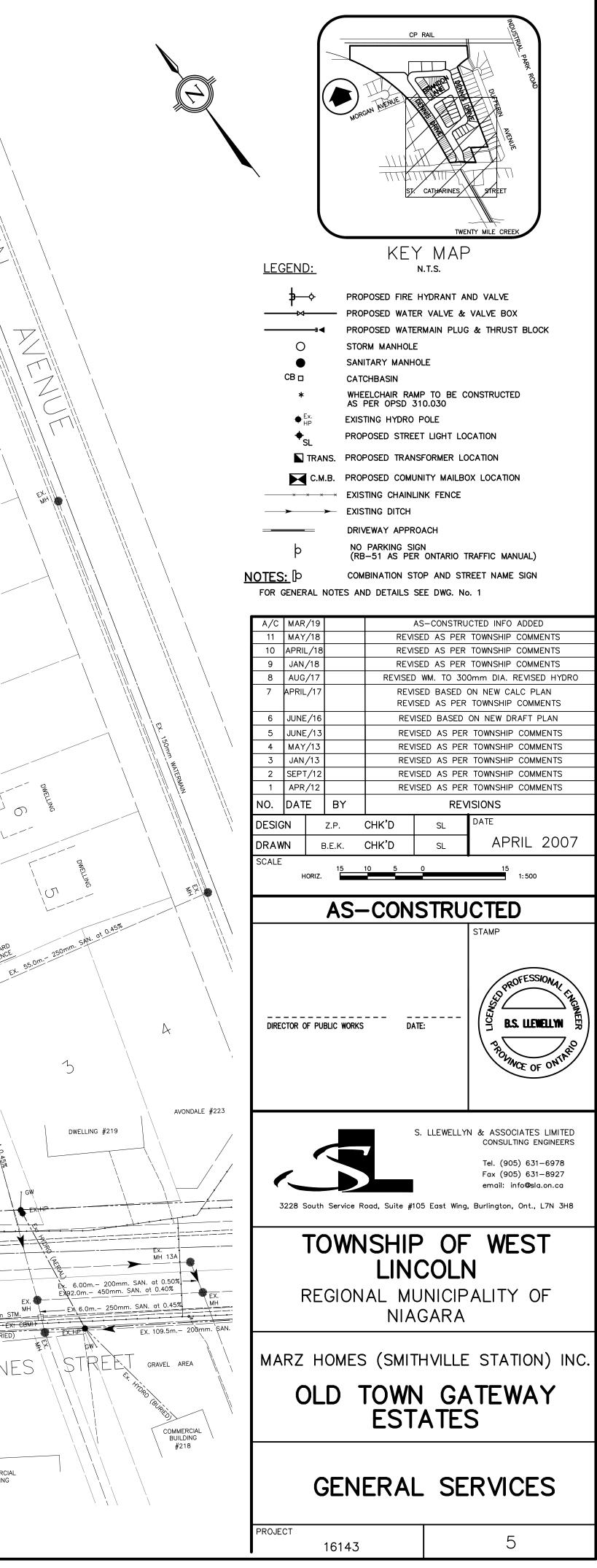
Hydroworks HD ETV Verification Statement

Hydroworks HD Operations and Maintenance Manual

CB Shield Operations Manual and Design Chart


CB Shield ETV Verification Statement





Consultant:	nd Smith	l		Township of West Lincoln STORM SEWER DESIGN CALCULATIONS 5-YEAR PROPOSED										
Design By: A. Smith Date: June 10, 1	2025					Location:	132 College S	street, Smith	ville					
Location	n I	Manhole Number	Area "A" (ha)	Runoff Coeff "Ca"	Aa x Ca	Cumulative Area A = ΣAa	Cumulative A C = ΣAa x Ca	Time in Section "tcf"	Initial Time of Conc. "tci"	Time of Conc. tc = tcf + tci	Rainfall Intensity "i"	Quantity of Flow "Q"	Type of Pipe	N R⊄ C
	U/S	D/S	(,			(ha)		(min)	(min)	(min)	(mm/hr)	(m³/s)		┣
Morgan Avenue	1	2	0.500	0.50	0.25	0.500	0.25	0.31	10.00	10.31	104.75	0.073	PVC	
Morgan Avenue	2	3	0.230	0.50	0.12	0.730	0.37	0.69	10.31	11.00	102.42	0.104	PVC	
Morgan Avenue	3	4	0.586	0.50	0.29	1.316	0.66	0.74	11.00	11.74	100.04	0.183	PVC	
Morgan Avenue	4	5	0.000	0.50	0.00	1.316	0.66	0.63	11.74	12.37	98.09	0.179	PVC	
Morgan Avenue	5	PROP. 2	0.000	0.50	0.00	1.316	0.66	0.67	12.37	13.04	96.09	0.176	PVC	
Morgan Avenue	PROP. 2	PROP. 1	0.000	0.50	0.00	1.316	0.66	0.73	13.04	13.77	94.02	0.172	PVC	
SITE	CULTEC	PROP. 1	0.000	0.50	0.00	1.316	0.66	0.10	13.77	13.87	93.74	0.122	PVC	
SITE	PROP. 1	PROP. H/WALL	0.000	0.50	0.00	1.316	0.66	0.36	13.87	14.23	92.75	Flows from 0 0.294	CULTEC) Sy:
	1													
														1

				INFORM	-			
		Design Storn	n Paramet		Pipe Ro	oughness		
	Tci =	10 mins	A= 3175.0			0.013		
		t Lincoln	B=	20.00	min. v = 0.9 m/s			
	5-	5-Year C= 1.00			max v =	= 3.65m/s		
Manning's Roughness Coefficient "n"	Slope "S" (%)	Pipe Diameter "D" (mm)	Pipe Length "L" (m)	Pipe Velocity "V" (m/s)	Q _{FULL} (m ³ /s)	% Full		
0.013	0.84	375	27.3	1.47	0.17	43%		
0.013	0.89	375	62.6	1.51	0.17	60%		
0.013	0.55	450	59.5	1.34	0.22	83%		
0.013	0.31	525	42.3	1.12	0.25	72%		
0.013	0.30	600	48.5	1.20	0.35	50%		
0.013	0.30	675	56.8	1.30	0.48	36%		
0.013 System	0.89	525	11.3	1.89	0.42	29%		
0.013	0.38	750	34.0	1.57	0.72	41%		

Consultant:	RING & CONSULTING LTD)	Township of West Lincoln STORM SEWER DESIGN CALCULATIONS 100-YEAR PROPOSED											
Design By: A. Smith Date: June 10, 2	2025					Location:	132 College S	treet, Smith	ville					
Location		Manhole Number	Area "A" (ha)	Runoff Coeff "Ca"	Aa x Ca	Cumulative Area A = ΣAa	Cumulative A C = ΣAa x Ca	Time in Section "tcf"	Initial Time of Conc. "tci"	Time of Conc. tc = tcf + tci	Rainfall Intensity "i"	Quantity of Flow "Q"	Type of Pipe	R C
	U/S	D/S	(114)	Ca		(ha)		(min)	(min)	(min)	(mm/hr)	(m³/s)	Fipe	
Morgan Avenue	1	2	0.500	0.50	0.25	0.500	0.25	0.31	10.00	10.31	248.92	0.173	PVC	╞
Morgan Avenue	2	3	0.230	0.50	0.12	0.730	0.37	0.69	10.31	11.00	242.31	0.246	PVC	
Morgan Avenue	3	4	0.586	0.50	0.29	1.316	0.66	0.74	11.00	11.74	235.62	0.431	PVC	
Morgan Avenue	4	5	0.000	0.50	0.00	1.316	0.66	0.63	11.74	12.37	230.19	0.421	PVC	┢
Morgan Avenue	5	PROP. 0	0.000	0.50	0.00	1.316	0.66	0.67	12.37	13.04	224.67	0.411	PVC	┢
Morgan Avenue	PROP. 0	PROP. 1	0.000	0.50	0.00	1.316	0.66	0.73	13.04	13.77	218.98	0.400	PVC	╞
SITE	CULTEC	PROP. 1	0.000	0.50	0.00	1.316	0.66	0.10	13.77	13.87	218.23	0.302	PVC	
SITE	PROP. 1	PROP. H/WALL	0.000	0.50	0.00	1.316	0.66	0.36	13.87	14.23	215.53	Flows from 0.702	PVC	
														┢
													1	
														┢
													1	

			DESIGN	INFORM	ATION		
		Design Storn	n Paramet	ers	Pipe Ro	oughness	
	Tci =	10 mins	A= 6300.0		n = 0.013		
	Wes	t Lincoln	B=	15.000	min. v =	= 0.9 m/s	
	10	0-Year	C=	1.000	max v =	= 3.65m/s	
Manning's Roughness Coefficient "n"	Slope "S" (%)	Pipe Diameter "D" (mm)	Pipe Length "L" (m)	Pipe Velocity "V" (m/s)	Q _{FULL} (m ³ /s)	% Full	
0.013	0.84	375	27.3	1.47	0.17	103%	
0.013	0.89	375	62.6	1.51	0.17	142%	
0.013	0.55	450	59.5	1.34	0.22	195%	
0.013	0.31	525	42.3	1.12	0.25	168%	
0.013	0.30	600	48.5	1.20	0.35	117%	
0.013	0.30	675	56.8	1.30	0.48	83%	
0.013 System	0.89	525	11.3	1.89	0.42	71%	
0.013	0.38	750	34.0	1.57	0.72	98%	

LandSmith

	DEVELOPMENT	- AREA 1 - 5-YEAR ST				
		MIDUSS Output MIDUSS version			Version 2.25	
		MIDUSS Version MIDUSS created				
	1.0				rebrua	ary 7, 2010'
	10	Units used:	R. Dree	Jack Dilas		ie METRIC'
		Job folder:		-	PROJECTS	
		=	e street, s	mitnville	FSR\SWM\MIDU	
		Output filename:				RE_A1_5.out
		Licensee name:	- 10 /		andrew@lands	
		Company		-	ering & Consu	-
21	-	Date & Time last us	ed:	202	24-05-09 at 1	LI:2/:19 AM
31		IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
20	1500.000					
32		IORM Chicago storm"				
	1	Chicago storm"				
	3175.000	Coefficient A"				
		Constant B"				
		Exponent C"				
		Fraction R"				
	180.000		~ "			
	1.000			22	~ "	
		aximum intensity	105.8		11 .	
	17 6	otal depth	47.6		ic file"	
33		005hyd Hydrograph ATCHMENT 101"	extension	usea in tr	iis iiie"	
55	1					
	1	Triangular SCS"				
	1	Equal length"				
	_	SCS method"				
	101	PRE-DEV A1"				
	94.000	% Impervious"				
	0.270	Total Area"				
	41.000	Flow length"				
	1.440	Overland Slope"				
	0.016	Pervious Area"				
	41.000	Pervious length"				
	1.440	Pervious slope"				
	0.254	Impervious Area"				
	41.000	Impervious length"				
	1.440	Impervious slope" Pervious Manning 'n				
	0.250	2				
	75.000 0.260	Pervious SCS Curve Pervious Runoff coe				
	0.260	Pervious Runoii coe Pervious Ia/S coeff				
	0.100 8.467	Pervious Initial ab				
	8.467 0.015	Impervious Initial ab				
	98.000	Impervious Manning Impervious SCS Curv				
	98.000 0.873	Impervious SCS Curv Impervious Runoff c				
	0.873	Impervious Runoii c Impervious Ia/S coe				
	0.100	Impervious In/S coe Impervious Initial				
	0.310	0.072 0.00) c.m/sec"	
	~	0.072 0.00 atchment 101	Pervious		is Total Area	- "
		urface Area	0.016	0.254	0.270	hectare"
		ime of concentration	23.998	2.916	3.309	minutes"
		ime of concentration		2.916	3.309 101.288	
			135.950	100.630 47.625	47.625	minutes"
		ainfall depth	47.625			mm"
		ainfall volume	7.72	120.87	128.59	c.m"
		ainfall losses	35.253	6.051	7.803	mm"
		unoff depth	12.372	41.574	39.822	mm"
		unoff volume	2.00	105.51	107.52	c.m" "
		unoff coefficient aximum flow	0.260 0.001	0.873 0.072	0.836 0.072	
						c.m/sec"

LandSmith

		- AREA 1 - 100-YEAR MIDUSS Output				>"
		MIDUSS version			Version 2.2	5 rev. 473"
		MIDUSS created				ary 7, 2010"
	10	Units used:				ie METRIC"
		Job folder:	Z:\Pro	ject File:	s\PROJECTS\	Smithville\"
		132 Collec				USS\Pre-Dev"
		Output filename:				A1 100.out"
		Licensee name:				
		Company	LandSmi	th Engine	ering & Cons	ulting Ltd."
		Date & Time last us	sed:	202	24-05-09 at	11:47:25 AM"
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	IORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
	1.000	-				
	0.500					
	180.000	Duration"				
	1.000	Time step multiplie				
		aximum intensity	252.0		nr"	
		otal depth	96.9			
~ ~	6	1 1 1 1	n extension	used in t	nis file"	
33		ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A1"				
	94.000	% Impervious"				
	0.270	Total Area"				
	41.000	Flow length"				
	1.440	Overland Slope"				
	0.016	Pervious Area"				
	41.000 1.440	Pervious length" Pervious slope"				
	0.254	Impervious Area"				
	41.000	Impervious length"				
	1.440	Impervious slope"				
	0.250	Pervious Manning 'r				
	75.000	Pervious SCS Curve				
	0.465	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ak				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.932	Impervious Runoff of				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.178 0.00) c.m/sec"	
	C	atchment 101	Pervious		us Total Are	a "
		irface Area	0.016	0.254	0.270	hectare"
		ime of concentration		2.046	2.399	minutes"
		ime to Centroid	119.035	97.904	98.556	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	15.70	245.99	261.69	c.m"
		ainfall losses	51.853	6.590	9.306	mm"
		unoff depth	45.070	90.333	87.617	mm"
		unoff volume	7.30	229.26	236.57	c.m"
	Rı	unoff coefficient	0.465	0.932	0.904	"

LandSmith

		- AREA 2 - 5-YEAR ST MIDUSS Output				>
		MIDUSS version			Version 2.25	
		MIDUSS created				ary 7, 2010
	10	Units used:			40	ie METRIC
		Job folder:	Z:\Pro	ject Files	s\PROJECTS\ S	
		132 Collec			FSR\SWM\MIDU	
		Output filename:				RE A2 5.out
		Licensee name:			andrew@lands	
		Company	LandSmi	th Engine	ering & Consu	ulting Ltd.
		Date & Time last us		2)24-05-09 at	-
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	TORM Chicago storm"				
	1	Chicago storm"				
	3175.000	Coefficient A"				
	20.000	Constant B"				
	1.000	Exponent C"				
	0.500	Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	er"			
	Ma	aximum intensity	105.8	33 mm/h	ır"	
	Т	otal depth	47.6	25 mm"		
	6	005hyd Hydrograph	extension	used in th	nis file"	
33	Cž	ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A2"				
	22.000	% Impervious"				
	1.577	Total Area"				
	210.000	Flow length"				
	1.860	Overland Slope"				
	1.230	Pervious Area"				
	210.000	Pervious length"				
	1.860	Pervious slope"				
	0.347	Impervious Area"				
	210.000	Impervious length"				
	1.860	Impervious slope"				
	0.250	Pervious Manning 'r				
	75.000	Pervious SCS Curve				
	0.260	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ab				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.883	Impervious Runoff o				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.101 0.00) c.m/sec"	
		atchment 101	Pervious	-	us Total Area	a "
		ırface Area	1.230	0.347	1.577	hectare"
		ime of concentration	59.224	7.197	33.774	minutes"
	T	ime to Centroid	178.203	106.074	142.920	minutes"
	Ra	ainfall depth	47.625	47.625	47.625	mm"
	Ra	ainfall volume	585.82	165.23	751.05	c.m"
	Ra	ainfall losses	35.244	5.590	28.720	mm"
	Rı	unoff depth	12.381	42.035	18.905	mm"
	Rı	unoff volume	152.30	145.84	298.13	c.m"
		unoff coefficient	0.260	0.883	0.397	"

LandSmith

		MIDUSS Output				>"
		MIDUSS version			Version 2.25	
		MIDUSS created				ary 7, 2010"
	10	Units used:				ie METRIC"
		Job folder:	Z:\Pro	ject Files	s\PROJECTS\ S	
		132 Collec			FSR\SWM\MID	
		Output filename:				A2 100.out"
		Licensee name:			andrew@lands	smithec.com"
		Company	LandSmi	th Engine	ering & Consu	ulting Ltd."
		Date & Time last us	sed:	20	024-05-09 at	2:07:39 PM"
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	FORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
	1.000	-				
	0.500					
	180.000	Duration"				
	1.000	Time step multiplie				
		aximum intensity	252.0		ır"	
		otal depth	96.9			
~ ~	6		n extension	used in th	nis file"	
33		ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A2"				
	22.000	% Impervious"				
	1.577	Total Area"				
	210.000	-				
	1.860	Overland Slope"				
	1.230					
	210.000	Pervious length"				
	1.860	Pervious slope" Impervious Area"				
	0.347 210.000	Impervious length"				
	1.860	Impervious slope"				
		Pervious Manning 'r				
	0.250 75.000	Pervious SCS Curve				
	0.466	Pervious Runoff coe				
	0.466	Pervious Ia/S coefi				
	8.467	Pervious Initial at				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.939	Impervious Runoff of				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial		"		
	0.010	0.267 0.00) c.m/sec"	
	C	atchment 101	Pervious		is Total Area	- "
		irface Area	1.230	0.347	1.577	hectare"
		ime of concentration		5.049	23.057	minutes"
		ime to Centroid	143.451	101.857	128.378	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	1192.21	336.26	1528.48	c.m"
		ainfall losses	51.748	5.898	41.661	mm"
		noff depth	45.175	91.025	41.001 55.262	mm"
		inoff volume	45.175 555.68	91.025 315.80	871.48	c.m"
	RI		JJJ.00	JTJ.00		
	D,	noff coefficient	0.466	0.939	0.570	

LandSmith

· · ·		- AREA 3 - 5-YEAR ST MIDUSS Output				>"
,		MIDUSS Output MIDUSS version			Version 2 2	5 rev. 473"
		MIDUSS created				ary 7, 2010"
	10	Units used:			rebru	ie METRIC"
	10	Job folder:	Z·\Pro	iect Files	\PROJECTS\	Smithville\"
				-		USS\Pre-Dev"
		Output filename:	001000, 0			RE A3 5.out"
		Licensee name:				smithec.com"
		Company	LandSmi			ulting Ltd."
		Date & Time last us		-	-	11:33:47 AM"
31	Ч.	IME PARAMETERS"	ou.	202	1 00 05 40	
01	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32		IORM Chicago storm"				
52	1	Chicago storm"				
	3175.000	Coefficient A"				
		Constant B"				
		Exponent C"				
		Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	r"			
		aximum intensity	105.8	33 mm/h	r"	
		otal depth	47.6		_	
	6	005hyd Hydrograph			is file"	
33		ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A3"				
	95.000	% Impervious"				
	0.043	Total Area"				
	41.000	Flow length"				
	0.800	Overland Slope"				
	0.002	Pervious Area"				
	41.000	Pervious length"				
	0.800	Pervious slope"				
	0.041	Impervious Area"				
	41.000	Impervious length"				
	0.800	Impervious slope"				
	0.250	Pervious Manning 'n				
	75.000	Pervious SCS Curve				
	0.260	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ab				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.868	Impervious Runoff c				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.012 0.00			c.m/sec"	
	C	atchment 101	Pervious		s Total Are	a "
		urface Area	0.002	0.041	0.043	hectare"
		ime of concentration	28.626	3.479	3.869	minutes"
		ime to Centroid	141.482	101.366	101.988	minutes"
		ainfall depth	47.625	47.625	47.625	mm"
		ainfall volume	1.02	47.825	20.48	c.m"
		ainfall losses	35.263	19.45 6.310	20.48 7.758	mm"
		unoff depth	12.362	6.310 41.315	39.867	mm"
		unoii depth unoff volume		41.315 16.88	39.867 17.14	mm" c.m"
		unoff coefficient	0.27			c.m" "
			0.260	0.868	0.837	
	Ma	aximum flow	0.000	0.012	0.012	c.m/sec"

LandSmith

		- AREA 3 - 100-YEAR MIDUSS Output				>"
		MIDUSS version			Version 2.2	5 rev. 473"
		MIDUSS created				ary 7, 2010"
	10	Units used:				ie METRIC"
		Job folder:	Z:\Pro	ject Files	s\PROJECTS\	Smithville\"
		132 Colleg	e Street, S	mithville	FSR\SWM\MID	USS\Pre-Dev"
		Output filename:				A3 100.out"
		Licensee name:			andrew@land	smithec.com"
		Company	LandSmi	th Engine	ering & Cons	ulting Ltd."
		Date & Time last us	ed:	202	24-05-09 at	11:53:46 AM"
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	IORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
		Constant B"				
	1.000	-				
	0.500					
	180.000	Duration"				
	1.000	Time step multiplie				
		aximum intensity	252.0		ır"	
		otal depth	96.9			
2.2	6		extension	used in th	nıs tıle"	
33		ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A3"				
	95.000	% Impervious"				
	0.043	Total Area"				
	41.000	Flow length"				
	0.800	Overland Slope"				
	0.002	Pervious Area"				
	41.000	Pervious length"				
	0.800	Pervious slope"				
	0.041	Impervious Area"				
	41.000	Impervious length"				
	0.800	Impervious slope"				
	0.250	Pervious Manning 'n				
	75.000	Pervious SCS Curve				
	0.465	Pervious Runoff coe Pervious Ia/S coeff				
	0.100	Pervious Ia/S coeff Pervious Initial ab				
	8.467	Impervious Initial ab				
	0.015					
	98.000	Impervious SCS Curv				
	0.929	Impervious Runoff c				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial) ~ ~ / "	
	~	0.028 0.00) c.m/sec"	. "
		atchment 101	Pervious	-	us Total Are	
		urface Area	0.002	0.041	0.043	hectare"
		ime of concentration		2.440	2.791	minutes"
		ime to Centroid	122.250	98.408	99.020	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	2.08	39.59	41.68	c.m"
		ainfall losses	51.867	6.858	9.108	mm"
		unoff depth	45.056	90.065	87.815	mm"
		unoff volume	0.97	36.79	37.76	c.m" "
		unoff coefficient aximum flow	0.465 0.001	0.929 0.028	0.906 0.028	" c.m/sec"

ENGINEERING & CONSULTING LTD.

31 32	5.000 180.000 1500.000 S1 1 3175.000	Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" FORM Chicago storm"	e Street, S LandSmi	ject Files mithville\ th Enginee	\PROJECTS_S FSR\SWM\MIDU	ry 7, 2010" ie METRIC" mithville\" SS\Pre-Dev" E_A4_5.out" mithec.com" lting Ltd."
	T1 5.000 180.000 1500.000 ST 1 3175.000	MIDUSS created Units used: Job folder: 132 Colleg Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"	e Street, S LandSmi	ject Files mithville\ th Enginee	Februa \PROJECTS_S FSR\SWM\MIDU PR andrew@lands ring & Consu	ry 7, 2010" ie METRIC" mithville\" SS\Pre-Dev" E_A4_5.out" mithec.com" lting Ltd."
	T1 5.000 180.000 1500.000 ST 1 3175.000	Units used: Job folder: 132 Colleg Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"	e Street, S LandSmi	mithville\ th Enginee	\PROJECTS_S FSR\SWM\MIDU PR andrew@lands ring & Consu	ie METRIC' mithville\' SS\Pre-Dev' E_A4_5.out' mithec.com' lting Ltd.'
	T1 5.000 180.000 1500.000 ST 1 3175.000	Job folder: 132 Colleg Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"	e Street, S LandSmi	mithville\ th Enginee	FSR\SWM\MIDU PR andrew@lands ring & Consu	mithville\' SS\Pre-Dev' E_A4_5.out' mithec.com' lting Ltd.'
	5.000 180.000 1500.000 S1 1 3175.000	132 Colleg Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"	e Street, S LandSmi	mithville\ th Enginee	FSR\SWM\MIDU PR andrew@lands ring & Consu	SS\Pre-Dev' E_A4_5.out' mithec.com' lting Ltd.'
	5.000 180.000 1500.000 S1 1 3175.000	Output filename: Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" FORM Chicago storm"	LandSmi	th Enginee	PR andrew@lands ring & Consu	E_A4_5.out' mithec.com' lting Ltd.'
	5.000 180.000 1500.000 S1 1 3175.000	Licensee name: Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"		th Enginee	andrew@lands ring & Consu	mithec.com' lting Ltd.'
	5.000 180.000 1500.000 S1 1 3175.000	Company Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" FORM Chicago storm"		th Enginee	ring & Consu	lting Ltd.'
	5.000 180.000 1500.000 S1 1 3175.000	Date & Time last us IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" FORM Chicago storm"		-	-	-
	5.000 180.000 1500.000 S1 1 3175.000	IME PARAMETERS" Time Step" Max. Storm length" Max. Hydrograph" FORM Chicago storm"				1:32:20 AM'
32	5.000 180.000 1500.000 S1 1 3175.000	Time Step" Max. Storm length" Max. Hydrograph" TORM Chicago storm"				
32	1500.000 ST 1 3175.000	Max. Storm length" Max. Hydrograph" TORM Chicago storm"				
32	51 3175.000	Max. Hydrograph" TORM Chicago storm"				
32	1 3175.000	FORM Chicago storm"				
	1 3175.000	=				
		Chicago storm"				
	20 000	Coefficient A"				
	20.000	Constant B"				
	1.000	Exponent C"				
	0.500	Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	r"			
	Ma	aximum intensity	105.8	33 mm/h	r"	
	Тс	otal depth	47.6	25 mm"		
	6	005hyd Hydrograph	extension	used in th	is file"	
33	CZ	ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A4"				
	76.000	% Impervious"				
	0.064	Total Area"				
	50.000	Flow length"				
	1.520	Overland Slope"				
	0.015	Pervious Area"				
	50.000	Pervious length"				
	1.520	Pervious slope"				
	0.049	Impervious Area"				
	50.000	Impervious length"				
	1.520	Impervious slope"				
	0.250	Pervious Manning 'n				
	75.000	Pervious SCS Curve				
	0.260	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ab				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.871	Impervious Runoff c				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial			/	
	-	0.014 0.00			c.m/sec"	
		atchment 101	Pervious	-	s Total Area	
		urface Area	0.015	0.049	0.064	hectare"
		ime of concentration	26.598	3.232	5.243	minutes"
		ime to Centroid	139.063	101.050	104.322	minutes"
		ainfall depth	47.625	47.625	47.625	mm"
		ainfall volume	7.32	23.16	30.48	c.m"
		ainfall losses	35.252	6.136	13.124	mm"
		noff depth	12.373	41.489	34.501	mm"
		unoff volume	1.90	20.18	22.08	c.m"
		unoff coefficient aximum flow	0.260 0.001	0.871 0.014	0.724 0.014	" c.m/sec"

LandSmith

		- AREA 4 - 100-YEAR MIDUSS Output				>"
		MIDUSS version			Version 2.2	5 rev. 473"
		MIDUSS created				ary 7, 2010"
	10	Units used:				ie METRIC"
		Job folder:	Z:\Pro	ject File	s\PROJECTS\	
		132 Colleg			\FSR\SWM\MID	
		Output filename:				A4 100.out"
		Licensee name:			andrew@land	smithec.com"
		Company	LandSmi	th Engine	ering & Cons	ulting Ltd."
		Date & Time last us	ed:	20	24-05-09 at	11:52:40 AM"
31	Т	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	IORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
	1.000	Exponent C"				
	0.500					
	180.000	Duration"				
	1.000	Time step multiplie	er"			
		aximum intensity	252.0		hr"	
	Т	otal depth	96.9			
	6	100hyd Hydrograph	extension	used in t	his file"	
33	C.	ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	PRE-DEV A4"				
	76.000	% Impervious"				
	0.064	Total Area"				
	50.000	Flow length"				
	1.520	Overland Slope"				
	0.015	Pervious Area"				
	50.000	Pervious length"				
	1.520	Pervious slope"				
	0.049	Impervious Area"				
	50.000	Impervious length"				
	1.520	Impervious slope"				
	0.250	Pervious Manning 'n				
	75.000	Pervious SCS Curve				
	0.466	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ab				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.932	Impervious Runoff c				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.035 0.00			0 c.m/sec"	
		atchment 101	Pervious	-	us Total Are	
		urface Area	0.015	0.049	0.064	hectare"
		ime of concentration		2.267	3.996	minutes"
		ime to Centroid	120.843	98.194	101.281	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	14.89	47.14	62.03	c.m"
		ainfall losses	51.784	6.605	17.448	mm"
		unoff depth	45.139	90.318	79.475	mm"
		unoff volume	6.93	43.93	50.86	c.m"
		unoff coefficient	0.466	0.932	0.820	" c.m/sec"
		aximum flow	0.004	0.034	0.035	

LandSmith

	DEVELOPMEN.	r – AREA 1 – 5-YEAR	STORM:			
		MIDUSS Output				>
		MIDUSS version			Version 2.25	5 rev. 473
		MIDUSS created			Februa	ary 7, 2010
	10	Units used:				ie METRIC
		Job folder:	Z:\Pro	ject Files	\PROJECTS\ S	Smithville\
		132 Colleg	e Street, Sm	ithville\F	SR\SWM\MIDUS	SS\Post-Dev
		Output filename:			POS	ST_A1_5.out
		Licensee name:			andrew@lands	smithec.com
		Company	LandSmi	th Enginee	ring & Consu	ulting Ltd.
		Date & Time last u	sed:	202	4-07-31 at 1	L0:37:38 AM
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	TORM Chicago storm"				
	1	Chicago storm"				
	3175.000	Coefficient A"				
	20.000	Constant B"				
	1.000	Exponent C"				
	0.500	Fraction R"				
	180.000	Duration"				
	1.000	Time step multipli	er"			
	Ma	aximum intensity	105.8	33 mm/h	r"	
	Т	otal depth	47.6	25 mm"		
	6	005hyd Hydrograp	h extension	used in th	is file"	
33	CZ	ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A1"				
	49.000	% Impervious"				
	0.281	Total Area"				
	26.000	Flow length"				
	1.000	Overland Slope"				
	0.143	Pervious Area"				
	26.000	Pervious length"				
	1.000	Pervious slope"				
	0.138	Impervious Area"				
	26.000	Impervious length"				
	1.000	Impervious slope"				
	0.250	Pervious Manning '				
	75.000	Pervious SCS Curve				
	0.260	Pervious Runoff co				
	0.100	Pervious Ia/S coef				
	8.467	Pervious Initial a				
	0.015	Impervious Manning				
	98.000	Impervious SCS Cur				
	0.877	Impervious Runoff				
	0.100	Impervious Ia/S co				
	0.518	Impervious Initial				
		0.040 0.0			c.m/sec"	
		atchment 101	Pervious	-	s Total Area	
		irface Area	0.143	0.138	0.281	hectare"
		ime of concentration		2.475	6.695	minutes"
	T	ime to Centroid	131.606	100.053	107.493	minutes"
		ainfall depth	47.625	47.625	47.625	mm"
	Ra	ainfall volume	68.25	65.57	133.83	c.m"
	Ra	ainfall losses	35.250	5.880	20.859	mm"
	Rı	unoff depth	12.375	41.745	26.766	mm"
		inoff volume	17.73	57.48	75.21	c.m"
					0.562	
	Ri	unoff coefficient	0.260	0.877	0.302	

LandSmith

		F - AREA 1 - 100-YEAR MIDUSS Output				>
		MIDUSS version			Version 2.2	5 rev. 473
		MIDUSS created				ary 7, 2010
	10	Units used:				ie METRIC
		Job folder:	Z:\Pro	ject File	s\PROJECTS\ :	Smithville\
		132 College	Street, Sm	ithville\	FSR\SWM\MIDU	SS\Post-Dev
		Output filename:			POST	A1 100.out
		Licensee name:			andrew@land	smithec.com
		Company	LandSmi	th Engine	ering & Cons	ulting Ltd.
		Date & Time last us	ed:	20	24-07-31 at	10:40:15 AM
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	IORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
		Exponent C"				
		Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie				
		aximum intensity	252.0		hr"	
		otal depth	96.9			
	6	100hyd Hydrograph	extension	used in t	his file"	
33		ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A1"				
	49.000	% Impervious"				
	0.281	Total Area"				
	26.000	Flow length"				
	1.000	Overland Slope"				
	0.143	Pervious Area"				
	26.000	Pervious length"				
	1.000 0.138	Pervious slope"				
	26.000	Impervious Area" Impervious length"				
	1.000	Impervious slope"				
	0.250	Pervious Manning 'n				
	75.000	Pervious SCS Curve				
	0.465	Pervious Runoff coe				
	0.405	Pervious Ia/S coeff				
	8.467	Pervious Initial ab				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.932	Impervious Runoff c				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial		"		
		0.116 0.00			0 c.m/sec"	
	C	atchment 101	Pervious		us Total Area	a "
		urface Area	0.143	0.138	0.281	hectare"
		ime of concentration	11.451	1.737	5.054	minutes"
		ime to Centroid	116.505	97.515	104.000	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	138.90	133.45	272.35	c.m"
		ainfall losses	51.900	6.548	29.677	mm"
		unoff depth	45.023	90.375	67.246	mm"
		unoff volume	64.52	124.44	188.96	c.m"
		unoff coefficient	0.465	0.932	0.694	"
			· · · · ·			

LandSmith

		<u>F - AREA 2 - CULTEC S</u> MIDUSS Output				>"
,		MIDUSS version		V	Version 2.25	rev. 473"
		MIDUSS created				ry 7, 2010"
	10	Units used:				ie METRIC"
		Job folder:			PROJECTS_S	
		132 College	e Street, Sm		SR\SWM\MIDUS	
		Output filename:			5_cultec_UP	
		Licensee name:	- 10 1		andrew@lands	
		Company		-	ing & Consu	-
3	1 ന	Date & Time last us IME PARAMETERS"	sed:	2025	5-06-10 at 1	1:23:58 AM"
3	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
3		IORM Chicago storm"				
	1	Chicago storm"				
	3175.000	Coefficient A"				
	20.000	Constant B"				
	1.000	Exponent C"				
		Fraction R"				
	180.000					
	1.000	Time step multiplie				
		aximum intensity	105.8			
		otal depth	47.6		o file"	
3	6	005hyd Hydrograpł ATCHMENT 101"	n extension	usea in thi	s ille"	
5		Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A2"				
	78.000	% Impervious"				
	1.548	Total Area"				
	180.000	Flow length"				
	1.000	Overland Slope"				
	0.341	Pervious Area"				
	180.000	Pervious length"				
	1.000	Pervious slope"				
	1.207	Impervious Area"				
	180.000	Impervious length"				
	1.000	Impervious slope"				
	0.250 75.000	Pervious Manning 'r Pervious SCS Curve				
	0.260					
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ak				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv	ve No."			
	0.888	Impervious Runoff o	coefficient"			
	0.100	Impervious Ia/S coe	efficient"			
	0.518	Impervious Initial				
		0.346 0.00			c.m/sec"	
		atchment 101	Pervious	-	s Total Area	
		urface Area	0.341	1.207	1.548	hectare"
		ime of concentration		7.904	12.263	minutes"
		ime to Centroid	185.179	106.986	112.952	minutes"
		ainfall depth	47.625	47.625	47.625	mm" c.m"
		ainfall volume ainfall losses	162.19 35.244	575.04 5.344	737.23	c.m" mm"
		unoff depth	35.244 12.381	5.344 42.281	11.922 35.703	mm"
		unoff volume	42.17	42.281	552.68	c.m"
		unoff coefficient	0.260	0.888	0.750	"
		aximum flow	0.007	0.345	0.346	c.m/sec"
4		YDROGRAPH Add Runoff				
	4	Add Runoff "				
		0.346 0.34	16 0.000	0.000"		

LandSmith

"	54		ND DESIGN				
"		0.346		peak flow		," ''	
"		0.127	2	utflow			
"		552.7		ph volume	c.m"		
"		31.		f stages"			
"		187.430		water leve		, "	
"		188.960		water leve			
"		187.430	-	water lev			
"		0	-	ign Data:			lse"
"				Discharge			
"			187.430	0.000	0.000"		
"			187.490	0.00210	25.900"		
"			187.540	0.00744	51.900"		
			187.590	0.01470	77.500"		
			187.640	0.02356	102.900"		
			187.690	0.03381			
			187.740	0.06296	153.300"		
			187.790	0.07525	178.400"		
			187.840	0.08580	203.200"		
			187.890	0.09709	227.700"		
			187.940 187.990	0.1097 0.1231	251.900" 276.000"		
			187.990				
			188.100	0.1371 0.1621			
			188.150	0.1021	346.900"		
			188.200	0.1863	369.800"		
			188.250	0.1971	392.100"		
"			188.300	0.2071	414.200"		
"			188.350	0.2167			
"			188.400	0.2258	456.100"		
"			188.450	0.2346	476.100"		
"			188.500	0.2429	494.800"		
"			188.550	0.2510	512.100"		
"			188.600	0.2589	527.000"		
"			188.650	0.2665	540.200"	,	
"			188.700	0.2738	552.300"		
"			188.760	0.2824	564.500"	1	
"			188.810	0.2894	576.600"		
"			188.860	0.2962	588.800"	1	
"			188.910	0.3028	601.000"	1	
"			188.960	0.3093	613.100"	1	
"		2.	ORIFICES				
"			Orifice	Orifice	Orifice	Number	of"
"				coefficie			
"			187.430	0.630			000"
"			187.830	0.630	0.2100		000"
"			ak outflo			.122	c.m/sec"
"			ximum lev			.986	metre"
"			ximum sto	2		.247	c.m"
"		Ce	ntroidal	2		2.923	
			0.346	0.346	0.122	0.0	000 c.m/sec"

ENGINEERING & CONSULTING LTD.

		<u>F - AREA 2 - CULTEC S</u> MIDUSS Output					>
		MIDUSS version			Ve	ersion 2.25	rev. 473
		MIDUSS created				Februa	ry 7, 2010
	10	Units used:					ie METRIC
		Job folder:	Z:\Pi	roject	Files\H	PROJECTS_S	mithville\
		132 College	Street, S	Smithvi	lle\FSF	R\SWM\MIDUS	S\Post-Dev
		Output filename:		POST		_cultec_UP	
		Licensee name:				ndrew@lands	
		Company		nith En		lng & Consu	
0.1		Date & Time last us	ed:		2025-	-06-10 at 1	0:24:20 AM
31		IME PARAMETERS"					
	5.000	Time Step" Max. Storm length"					
	180.000 1500.000	Max. Storm rength Max. Hydrograph"					
32		TORM Chicago storm"					
52	1	Chicago storm"					
	6300.000	Coefficient A"					
		Constant B"					
		Exponent C"					
	0.500	Fraction R"					
	180.000	Duration"					
	1.000	Time step multiplie	r"				
	Ma	aximum intensity	252.	.000	mm/hr'	,	
	Τc	otal depth		.923	mm"		
	6	100hyd Hydrograph	extensior	n used	in this	s file"	
33		ATCHMENT 101"					
	1	Triangular SCS"					
	1	Equal length"					
	1	SCS method"					
	101	POST-DEV A2"					
	78.000 1.548	% Impervious" Total Area"					
	180.000	Flow length"					
	1.000	Overland Slope"					
	0.341	Pervious Area"					
	180.000	Pervious length"					
	1.000	Pervious slope"					
	1.207	Impervious Area"					
	180.000	Impervious length"					
	1.000	Impervious slope"					
	0.250	Pervious Manning 'n					
	75.000	Pervious SCS Curve	No."				
	0.466	Pervious Runoff coe	fficient"				
	0.100	Pervious Ia/S coeff					
	8.467	Pervious Initial ab		•			
	0.015	Impervious Manning					
	98.000	Impervious SCS Curv					
	0.940	Impervious Runoff c					
	0.100 0.518	Impervious Ia/S coe Impervious Initial					
	0.510	0.819 0.00				c.m/sec"	
	C -	0.019 0.00 atchment 101	Pervious			Total Area	
		irface Area	0.341	1.20		1.548	hectare"
		ine of concentration	36.561	5.54		9.349	minutes"
		ime to Centroid	147.480	102.		108.023	minutes"
		ainfall depth	96.923	96.9		96.923	mm"
		ainfall volume	330.08	1170		1500.37	c.m"
		ainfall losses	51.743	5.78		15.898	mm"
		noff depth	45.180	91.1		81.025	mm"
		inoff volume	153.87	1100		1254.26	c.m"
		noff coefficient	0.466	0.94		0.836	"
	Ma	aximum flow	0.044	0.81		0.819	c.m/sec"
40	HY	DROGRAPH Add Runoff	"				
	4	Add Runoff "					
		0.819 0.81	9 0.00		"000.0		

LandSmith

"	54		ND DESIGN			
"		0.819		peak flow		
"		0.307	2	utflow		
"		1254.3		ph volume	c.m"	
"		31.		f stages"		
"		187.430		water leve		^e n
"		188.960		water leve		
"		187.430	-	water lev		
"		0	-	2		0 = False"
"				Discharge		
"			187.430	0.000	0.000"	
"			187.490	0.00210	25.900"	
"			187.540	0.00744	51.900"	
			187.590	0.01470	77.500"	
			187.640	0.02356	102.900"	
			187.690	0.03381	128.300"	
			187.740	0.06296	153.300"	
			187.790	0.07525	178.400"	
			187.840	0.08580	203.200"	
			187.890	0.09709	227.700"	
			187.940 187.990	0.1097 0.1231	251.900" 276.000"	
			187.990	0.1231	299.900"	
			188.100	0.1371	323.500"	
			188.150	0.1021	346.900"	
			188.200	0.1863	369.800"	
			188.250	0.1971	392.100"	
"			188.300	0.2071	414.200"	
"			188.350	0.2167		
"			188.400	0.2258	456.100"	
"			188.450	0.2346	476.100"	,
"			188.500	0.2429	494.800"	,
"			188.550	0.2510	512.100"	,
"			188.600	0.2589	527.000"	,
"			188.650	0.2665	540.200"	,
"			188.700	0.2738	552.300"	,
"			188.760	0.2824	564.500"	,
"			188.810	0.2894	576.600"	,
"			188.860	0.2962	588.800"	
"			188.910	0.3028	601.000"	,
"			188.960	0.3093	613.100"	,
"		2.	ORIFICES	"		
"			Orifice	Orifice	Orifice	Number of"
"			invert	coefficie	diameter	orifices"
"			187.430	0.630		1.000"
"			187.830	0.630	0.2100	1.000"
"			ak outflo			0.302 c.m/sec"
"			ximum lev			8.923 metre"
"			ximum sto	-		.207 c.m"
"		Ce	ntroidal	-		2.551 hours"
			0.819	0.819	0.302	0.000 c.m/sec"

LandSmith

		F - AREA 3 - 5-YEAR S MIDUSS Output				>
		MIDUSS Version			Version 2.25	5 rev. 473
		MIDUSS created				ary 7, 2010
	10	Units used:				ie METRIC
		Job folder:	Z:\Pro	iect File	s\PROJECTS\ S	
					FSR\SWM\MIDUS	
		Output filename:	· · · · · , ·			ST A3 5.out
		Licensee name:			andrew@lands	
		Company	LandSmi	th Engine	ering & Consu	ulting Ltd.
		Date & Time last us	sed:	20	24-07-31 at 1	L0:49:26 AM
31	T	IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	FORM Chicago storm"				
	1	Chicago storm"				
	3175.000	Coefficient A"				
	20.000	Constant B"				
	1.000	Exponent C"				
	0.500	Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	er"			
	Ma	aximum intensity	105.8	33 mm/2	hr"	
	Т	otal depth	47.6	25 mm"		
	6	005hyd Hydrograph	n extension	used in t	his file"	
33	CZ	ATCHMENT 101"				
	1	Triangular SCS"				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A3"				
	0.000	% Impervious"				
	0.015	Total Area"				
	15.000	Flow length"				
	1.000	Overland Slope"				
	0.015	Pervious Area"				
	15.000	Pervious length"				
	1.000	Pervious slope"				
	0.000	Impervious Area"				
	15.000	Impervious length"				
	1.000	Impervious slope"				
	0.250	Pervious Manning 'r				
	75.000	Pervious SCS Curve				
	0.260	Pervious Runoff coe				
	0.100	Pervious Ia/S coeff				
	8.467	Pervious Initial ak				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.000	Impervious Runoff o				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial			· · ·	
		0.001 0.00			0 c.m/sec"	
		atchment 101	Pervious	-	us Total Area	
		urface Area	0.015	0.000	0.015	hectare"
		ime of concentration	14.644	1.780	14.644	minutes"
		ime to Centroid	124.744	0.000	124.744	minutes"
		ainfall depth	47.625	47.625	47.625	mm"
		ainfall volume	7.14	0.00	7.14	c.m"
		ainfall losses	35.244	47.625	35.244	mm"
		unoff depth	12.381	0.000	12.381	mm"
		unoff volume	1.86	0.00	1.86	c.m"
	Rı	unoff coefficient	0.260	0.000	0.260	"
		aximum flow	0.001	0.000	0.001	c.m/sec"

LandSmith

		F - AREA 3 - 100-YEAR MIDUSS Output				>
		MIDUSS version			Version 2.2	5 rev. 473
		MIDUSS created				ary 7, 2010
	10	Units used:				ie METRIC
	10	Job folder:	Z·\Pro	ject File	s\PROJECTS\	
				-	FSR\SWM\MIDU	
		Output filename:	s Street, Si			A3 100.out
		-				
		Licensee name:	T	the Received	andrew@land	
		Company		-	ering & Cons	-
		Date & Time last us	sed:	20.	24-07-31 at	10:50:44 AM
31		IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	FORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
	1.000	Exponent C"				
		Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	r"			
		aximum intensity	252.0	00 mm/3	hr"	
		otal depth	96.9			
	6	100hyd Hydrograph			his file"	
33		ATCHMENT 101"	I CAUCIIDION	uscu in c	IID IIIC	
55	1	Triangular SCS"				
		5				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A3"				
	0.000	% Impervious"				
	0.015	Total Area"				
	15.000	Flow length"				
	1.000	Overland Slope"				
	0.015	Pervious Area"				
	15.000	Pervious length"				
	1.000	Pervious slope"				
	0.000	Impervious Area"				
	15.000	Impervious length"				
	1.000	Impervious slope"				
	0.250	Pervious Manning 'r	, , , ,			
	75.000	Pervious SCS Curve				
	0.465					
	0.465	Pervious Ia/S coeff				
	8.467	Pervious Initial ak				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.000	Impervious Runoff o				
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.005 0.00	0.000	0.00	0 c.m/sec"	
	Ca	atchment 101	Pervious	Impervio	us Total Are	a "
	Sı	irface Area	0.015	0.000	0.015	hectare"
	Т	Ime of concentration	8.232	1.248	8.232	minutes"
		lme to Centroid	112.628	0.000	112.628	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	14.54	0.00	14.54	c.m"
		ainfall losses	51.877	96.923	51.877	mm"
		noff depth	45.046	0.000	45.046	mm"
		-				
		unoff volume	6.76	0.00	6.76	c.m"
		unoff coefficient aximum flow	0.465 0.005	0.000	0.465 0.005	" c.m/sec"

LandSmith

DUSS Out	>
DUSS ver	Version 2.25 rev. 473
DUSS cre	February 7, 2010
ts used	ie METRIC
folder	Z:\Project Files\PROJECTS\ Smithville\
13	lege Street, Smithville\FSR\SWM\MIDUSS\Post-Dev
put fil	
censee n	andrew@landsmithec.com
npany	LandSmith Engineering & Consulting Ltd.
e & Tim	t used: 2024-08-01 at 10:34:38 AM
PARAMETE	
ne Step"	
. Storm	th"
. Hydro	П
Chicago	m"
.cago st	
efficien	
nstant B	
onent C	
action R	
ation"	
ne step	-
um inten	
depth	47.625 mm"
-	raph extension used in this file"
1ENT 101	
angular	
al leng	
3 method	
ST-DEV A	
Impervio	
al Area	
w lengt	
erland S	
vious A	
vious l	
vious s	
pervious	
pervious pervious	
rvious M	
	rve No."
	coefficient"
	coefficient"
	l abstraction"
	ing 'n'"
	Curve No."
	ff coefficient"
	coefficient"
	ial abstraction"
0.014	0.000 0.000 0.000 c.m/sec"
nent 101	Pervious Impervious Total Area "
ce Area	0.070 0.044 0.114 hectare"
of conce	
to Centr	124.744 99.183 107.260 minutes"
all dept	47.625 47.625 47.625 mm"
all volu	33.12 21.17 54.29 c.m"
all loss	35.244 5.701 23.722 mm"
iii 1033 E depth	12.381 41.924 23.903 mm"
: uepun E volume	8.61 18.64 27.25 c.m"
: voidiic E coeffi	
CORIII	

LandSmith

		<u>F - AREA 4 - 100-YEAN</u> MIDUSS Output				>
		MIDUSS version			Version 2.2	5 rev. 473
		MIDUSS created				ary 7, 2010
	10	Units used:				ie METRIC
	10	Job folder:	Z·\Pro	iect File	s\PROJECTS\	
				-	FSR\SWM\MIDU	
		5	e btreet, bi	it chivitite (A4 100.out
		Output filename:				
		Licensee name:	T 10 /		andrew@land	
		Company		-	ering & Cons	-
		Date & Time last us	sed:	20.	24-08-01 at	10:36:11 AM
31		IME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm length"				
	1500.000	Max. Hydrograph"				
32	S	FORM Chicago storm"				
	1	Chicago storm"				
	6300.000	Coefficient A"				
	15.000	Constant B"				
	1.000	Exponent C"				
		Fraction R"				
	180.000	Duration"				
	1.000	Time step multiplie	er"			
		aximum intensity	252.0	00 mm/3	hr"	
		otal depth	96.9			
	6	-	n extension		his filo"	
33		ATCHMENT 101"	I CACCIIDIOII	ubcu in c	IID IIIC	
55	1	Triangular SCS"				
		2				
	1	Equal length"				
	1	SCS method"				
	101	POST-DEV A4"				
	39.000	% Impervious"				
	0.114	Total Area"				
	15.000	Flow length"				
	1.000	Overland Slope"				
	0.070	Pervious Area"				
	15.000	Pervious length"				
	1.000	Pervious slope"				
	0.044	Impervious Area"				
	15.000	Impervious length"				
	1.000	Impervious slope"				
	0.250	Pervious Manning 'n	n '"			
	75.000	Pervious SCS Curve				
	0.465					
	0.100	Pervious Ia/S coefi				
	8.467	Pervious Initial at				
	0.015	Impervious Manning				
	98.000	Impervious SCS Curv				
	0.921	Impervious Runoff (
	0.100	Impervious Ia/S coe				
	0.518	Impervious Initial				
		0.044 0.00			0 c.m/sec"	
	Ca	atchment 101	Pervious	Impervio	us Total Are	a "
	Sı	ırface Area	0.070	0.044	0.114	hectare"
	Т	ime of concentration	8.232	1.248	4.328	minutes"
		ime to Centroid	112.628	96.895	103.833	minutes"
		ainfall depth	96.923	96.923	96.923	mm"
		ainfall volume	67.40	43.09	110.49	c.m"
		ainfall losses	51.877	7.618	34.616	mm"
		unoff depth	45.046	89.305	62.307	mm"
		-				
		unoff volume	31.32	39.70	71.03	c.m" "
		unoff coefficient aximum flow	0.465 0.025	0.921 0.030	0.643 0.044	" c.m/sec"

Address

Country

City

CULTEC Stormwater Design Calculator

Please Fill in the Shaded Cells

ZIP/Postal Code

Input Project Requirements

Country

Phone

Email

L9C 3A6

Canada

289-309-3632

mithec.com

andrew@lands

Calculations Performed By: Project Information: Date: Project Name Name Andrew Smith 132 College Street Company Name LandSmith 1059 Upper James St, Suite 207 Hamilton Smithville ON Address State/Province City State/Province ZIP/Postal Code Ontario

Г Unit of Measure Select Model Stone Porosity Number of HVLV Internal Manifolds Stone Depth **Below** Chamber Stone Between Chamber rows ☑ Include Separator Row Workable Bed Depth Max. Bed Width Storage Volume Required 187.13 meters Stone Base Elevation

Metric	
Recharger 902HD	
40%	
1 Internal Manifold	
305	mm
305	mm
229	mm
2.06	meters
12.00	meters
680.00	cu. meters

Additional Information:

Other models are available if products above do not meet your requirements. Contact CULTEC for further design assistance. Call CULTEC at 203-775-4416 for pricing information.

Hyperlinks to product specific webpages:

Please visit our website for more information such as CAD details, spec information, brochures, installation instructions, and other design tools on certain models.

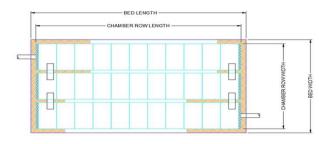
Contactor Field Drain C-4HD Contactor 100HD Recharger 150XLHD Recharger 180HD For design assistance, drawings and pricing send these calculations to: mailto:tech@cultec.com

Recharger 280HD Recharger 330XLHD Recharger 360HD Recharger 902HD

HVLV SFCx2 Feed Connector HVLV FC-24 Feed Connector HVLV FC-48 Feed Connector

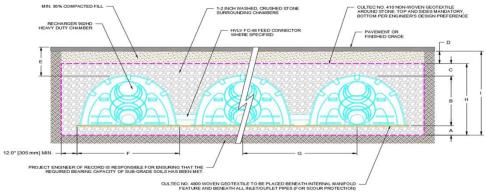
CULTEC No. 4800 Woven Geotextile CULTEC No. 410 Non-Woven Geotextile

Website: www.cultec.com



CULTEC Stormwater Design Calculator

RECHARGER 902HD	Calculations Performed By: Andrew Smith LandSmith 1059 Upper James St, Suite 207 Hamilton Ontario L9C 3A6 Canada 289-309-3632	
RECHARGER 902HD	LandSmith 1059 Upper James St, Suite 207 Hamilton Ontario L9C 3A6 Canada	
RECHARGER 902HD	LandSmith 1059 Upper James St, Suite 207 Hamilton Ontario L9C 3A6 Canada	
	andrew@landsmithec.com	
	Breakdown of Storage Provided by Recharger 902HD Stormwater System	
mm mm meters meters	Within Chambers 414.15 cu. meters Within Feed Connectors 0.08 cu. meters Within Store 271.81 cu. meters Total Storage Provided 686.0 cu. meters	
cu. meters	Total Storage Required 680.00 cu. meters	
cu. meters	<u> </u>	
r	neters neters zu. meters	


Recharger	arger 902HD 230 pieces 46 pieces Separator Row C		
Total Number of Chambers Required	230	pieces	
Separator Row Chambers	46	pieces	Separator Row Qty Included in Total
Chamber Units	230	pieces	
End Caps	10	pieces	
HVLV FC-48 Feed Connectors	4	pieces	Based on 1 Internal Manifold
CULTEC No. 410 Non-Woven Geotextile	1787	sq. meters	
CULTEC No. 4800 Woven Geotextile	66	meters	
Stone	680	cu. meters	

Bed Layout I	nformation	
Number of Rows Wide	5	pieces
Number of Chambers Long	46	pieces
Chamber Row Width	10.82	meters
Chamber Row Length	51.72	meters
Bed Width	11.43	meters
Bed Length	52.32	meters
Bed Area Required	598.07	sq. meters
Length of Separator Row	51.72	meters

Bed detail for reference only. Not project specific. Not to scale.

Conceptual	graphic	only.	Not job	specific.

	Cross Section Table Reference		
Α	Depth of Stone Base	305	mm
В	Chamber Height	1219	mm
с	Depth of Stone Above Units	305	mm
D	Depth of 95% Compacted Fill	305	mm
E	Max. Depth Allowed Above the Chamber	2.54	meters
F	Chamber Width	1981	mm
G	Center to Center Spacing	2.21	meters
н	Effective Depth	1.83	meters
I	Bed Depth	2.13	meters

CULTEC Stage-Storage Calculations

Project Number

Date:	June 11, 2025
Project 1	Information:
132 Colleg	je Street
Smithville	
0.01	

Chamber Model -	Recharger 902HD	
Number of Rows-	5	units
Total Number of Chambers -	230	units
HVLV FC-48 Feed Connectors-	4	units
Stone Void -	40	%
Stone Base -	305	mm
Stone Above Units -	305	mm
Area -	598.07	m2
Base of Stone Elevation -	187.13	

					lumes	torage Vo	nental S	D Incren	er 902H	Recharge				
	ition	Eleva		Total Cumu Storage Vo		Cumulative Volu	olume	Stone V	Volume	HVLV Feed Connector	r Volume	Chamber	f System	Height o
op of Stone Elevation	188,93 188,93 188,91 188,88 188,85 188,85 188,70 188,70 188,70 188,70 188,70 188,70 188,70 188,65 188,55 18	t 193.13 193.05 192.83 192.83 192.83 192.83 192.83 192.33 192.33 192.33 192.31 192.05 191.96 191.96 191.96 191.96 191.31 191.55 191.46 191.33 191.55 191.46 191.33 191.55 190.46 190.35 190.46 190.31 190.31 190.32 190.31 190.32 190.31 190.32 190.31 190.32 190.31 190.32 193.38 189.51 189.46 189.30 189.31 189.35 188.46 188.48 188.48<	n1 688.02 679.95 679.95 642.72 655.64 643.74 617.72 655.64 637.41 613.134 625.26 613.11 606.74 599.94 585.06 576.68 567.73 588.06 576.68 567.73 589.94 476.14 476.14 476.14 476.14 475.14 476.14 476.14 476.14 476.14 476.14 476.14 476.14 476.14 476.14 476.13 497.91 48.338.42 372.80 360.84 360.84 372.80 360.81 226.22 272.80 372.71 37	Storage VC rt³ 24226.73 24012.15 23797.56 23582.97 23582.97 23582.97 23582.97 235361.380 2293.22 22724.63 22510.04 22995.46 22095.46 22093.64 21866.29 21866.29 20365.26 20049.24 197385.51 19035.24 19758.365 17201.79 16814.82 16434.82 16430.87 15533.168 14422.91 13582.58 13165.30 12742.91 12320.51 14412.19 13582.58 13165.30 12742.91 12320.51 1230.51.168 14422.91 13582.58 13165.30 12742.91 12320.51 1242.91	Storage me 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	Cumulative Volu ft ³ 214.586 214.58	n³ 6.1 7.7 7.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.2 2.2 2.2 2.1 2.0 1.9 1.8 1.8 1.7 <th>Stone V r1 214.6 214.7 213.3 113.2 109.1 99.9 80.3</th> <th>Volume m3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</th> <th>HVLV Feed Connector F13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</th> <th>n³ 0.0 <</th> <th>R³ 0.0 0.135.4 135.4 135.4 354.8 354.8 363.2 363.2 363.2 363.1.7 371.7 371.6 388.6</th> <th>000 1829 1803 1773 1775 1777 1676 1600 1575 1727 1676 1600 1575 1524 1499 1473 1442 1372 1346 1321 1295 1219 1194 168 1001 905 940 941 965 940 941 660 633 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 <tr< th=""><th>in 72.0 72.0 69.0 66.0 66.0 66.0 66.0 62.0 64.0 60.0 59.0 55.0 55.0 55.0 55.0 55.0 55.0 5</th></tr<></th>	Stone V r1 214.6 214.7 213.3 113.2 109.1 99.9 80.3	Volume m3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HVLV Feed Connector F13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	n³ 0.0 <	R³ 0.0 0.135.4 135.4 135.4 354.8 354.8 363.2 363.2 363.2 363.1.7 371.7 371.6 388.6	000 1829 1803 1773 1775 1777 1676 1600 1575 1727 1676 1600 1575 1524 1499 1473 1442 1372 1346 1321 1295 1219 1194 168 1001 905 940 941 965 940 941 660 633 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 <tr< th=""><th>in 72.0 72.0 69.0 66.0 66.0 66.0 66.0 62.0 64.0 60.0 59.0 55.0 55.0 55.0 55.0 55.0 55.0 5</th></tr<>	in 72.0 72.0 69.0 66.0 66.0 66.0 66.0 62.0 64.0 60.0 59.0 55.0 55.0 55.0 55.0 55.0 55.0 5
ottom of Chamber Elev ottom of Stone Elevati	187.61 187.59 187.56 187.54 187.54 187.49 187.46 187.43 187.46 187.33 187.31 187.28 187.36 187.33 187.23 187.23 187.23 187.16 187.16	188.71 188.63 188.55 188.46 188.38 188.30 188.31 188.05 187.96 187.88 187.71 187.63 187.75 187.63 187.55 187.46 187.30 187.21	163.14 150.45 137.63 124.80 111.83 98.86 85.89 72.92 66.84 60.76 54.69 48.61 42.53 36.46 30.38 24.31 18.23 12.15 6.08 0.00	5761.15 5313.25 4860.33 3449.31 3491.20 3033.15 2575.03 2360.44 2145.86 1931.27 1716.69 1502.10 1287.52 1072.93 858.34 643.76 429.17 214.59 0.00	12.7 12.8 13.0 13.0 13.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	447.906 452.915 452.980 458.044 458.051 458.122 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586 214.586	1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.5 6.1 7.5	59.0 55.7 52.3 52.2 52.3 52.2 214.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0	$\begin{array}{c} 11.0\\ 11.2\\ 11.2\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	388.6 396.9 397.0 405.5 405.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	483 457 432 406 381 356 330 305 279 254 229 203 178 152 127 102 76 51 25 0	$\begin{array}{c} 19.0\\ 18.0\\ 17.0\\ 16.0\\ 15.0\\ 14.0\\ 13.0\\ 12.0\\ 11.0\\ 10.0\\ 9.0\\ 8.0\\ 7.0\\ 6.0\\ 5.0\\ 4.0\\ 3.0\\ 2.0\\ 1.0\\ 0.0\\ \end{array}$

VERIFICATION STATEMENT

GLOBE Performance Solutions

Verifies the performance of

Cultec Separator™ Row Filtration System

Developed by Cultec, Inc. Brookfield, Connecticut, USA

Registration: GPS-ETV_VR2021-03-31_v2

In accordance with

ISO 14034:2016

Environmental Management — Environmental Technology Verification (ETV)

John D. Wiebe, PhD Executive Chairman GLOBE Performance Solutions

March 31, 2021 Vancouver, BC, Canada

Verification Body GLOBE Performance Solutions 404 – 999 Canada Place | Vancouver, B.C | Canada |V6C 3E2

Verification Statement – Cultec, Inc. – Cultec Separator™ Row Filtration System Registration: GPS-ETV_VR2021-03-31_v2 Page I of 8

Technology description and application

Cultec Recharger and Contactor chambers are used for infiltration, detention and/or retention of stormwater underground. The system is comprised of thermoplastic arch-shaped chambers surrounded by clear crushed stone. Water enters the system through a Separator row and then flows through the stone and into a Chamber row prior to exiting. The Cultec stormwater system is sized based on the volume of stormwater which is stored in the voids created by the chamber and the voids in the clear stone surround, with a void ratio of 40%. The entire system is wrapped in a non-woven geotextile and/or impermeable geomembrane. In order to minimize fine particles and silts from blinding the voids in the clear stone surround, a single chamber row is wrapped in non-woven geotextile and placed on a woven geotextile. This row is connected to the inlet pipe of the Cultec system providing a filtration function as the surface stormwater run-off passes through the geotextile wrapped inlet row. Sediment is trapped within the Cultec Separator™ Row and may be removed through back flushing of this row. A typical system installation is illustrated in Figure I and Figure 2 below.

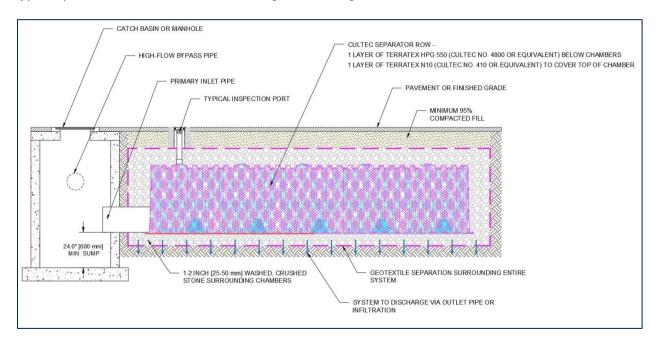


Figure 1: Cultec Separator[™] Row Filtration System – Cross-Sectional View

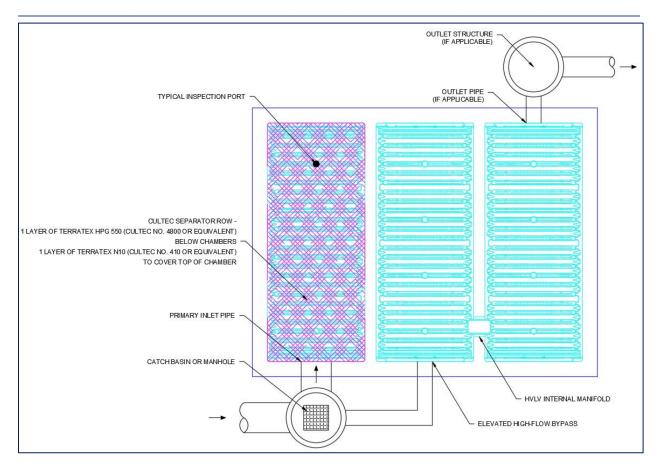


Figure 2: Cultec Separator[™] Row Filtration System – Plan View

Performance & testing conditions

The data and results published in this Verification Statement were obtained from the testing program conducted on the Cultec Separator[™] Row in accordance with a technology specific test plan (TSTP) developed and approved by the client and test lab (Good Harbour Laboratories, Mississauga, Ontario), and reviewed by Verification Expert and Verifying Organization, in compliance with ISO/IEC 14034.

The device tested was a Cultec Recharger 150XLHD R chamber with a base width of 838 mm (33") and height of 470 mm (18.5").

Test Setup

Two chambers were used for this study, a receiving chamber and a separation chamber. The two chambers were housed in a containment cell constructed out of wood, lined with an impermeable membrane. The dimensions of the test cell were 142" X 71" X 23.5" (3.58 m X 1.80 m X 0.60 m, L X W X H). The chambers were set up in the test cell in a manner consistent with a normal installation. The floor of the cell was covered with approximately 76 mm (3") of washed, crushed, clear stone¹ which in turn was covered by one layer of woven geotextile fabric as required for the installation of the system. The two chambers sat next to each other, in parallel. Washed crushed stone filled in the space around the test units up to a height of approximately 51 mm (2") from the base.² The test set-up is illustrated in Figure 3.

The geotextiles used for this study were:

Woven:	Terratex HPG 550
Nonwoven:	Terratex NI0

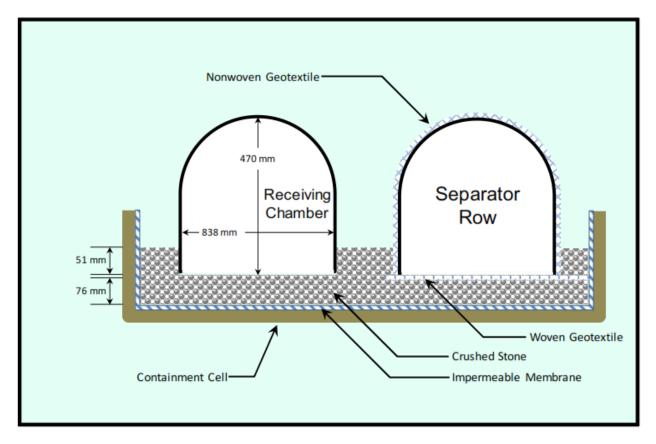


Figure 3: Test Cell Cross-Section for Model Recharger® I50XLHD R

The laboratory test set-up was a water flow loop, capable of moving water at a rate of up to 900 L/min. The loop was comprised of water reservoirs, pumps, stand pipe, receiving tank and a flow meter, in addition to the test cell.

Fresh water was pumped from the storage tank through a flow meter to the stand pipe, and from there it flowed by gravity through an inlet pipe to the separation chamber in the test cell. Sediment was added at an addition port in the inlet pipe upstream of the separation chamber.

From the water supply tanks, water was pumped by a centrifugal pump. Flow measurement was done using an electromagnetic type flow meter with an accuracy of $\pm 0.5\%$ of reading (1 – 200 gpm). The data logger was configured to record a flow measurement once every minute.

 $^{^1}$ A normal installation would typically have a crushed stone depth of 150 mm (6").

 $^{^{2}}$ For a normal installation, the stone completely fills the column between chamber rows and up to a minimum of 6" above the top of the crown of the chamber.

The influent pipe was 100 mm (4 inches) in diameter and sediment addition was done through a port at the crown of the influent pipe, 4 pipe diameters (406 mm) upstream of the containment cell. The sediment feeder was a volumetric screw feeder with vibratory hopper.

Water flow exited the receiving chamber and terminated with a free-fall into the Receiving Tank. Water was pumped from the Receiving Tank back to the storage tanks to complete the flow loop.

Sample Collection & Parameter Measurement

Background water samples were collected in 1L jars from the standpipe. The sample was taken by submerging the jar below the surface of the water until full.

Effluent samples were also grabbed by hand. The effluent pipe drained freely into the Receiving Tank and the effluent sample was taken at that point. The sampling technique was to take the grab sample by sweeping a wide-mouth I L jar through the stream of effluent flow such that the jar was full after a single pass.

Effluent water temperature was taken using a data logger submerged into the receiving tank during each run and configured to take a temperature reading once every minute. Run and sampling times were measured using NIST traceable stopwatches. The sediment feed samples that were taken during the run were collected in 500 mL jars and weighed on an analytical balance.

Test Sediment

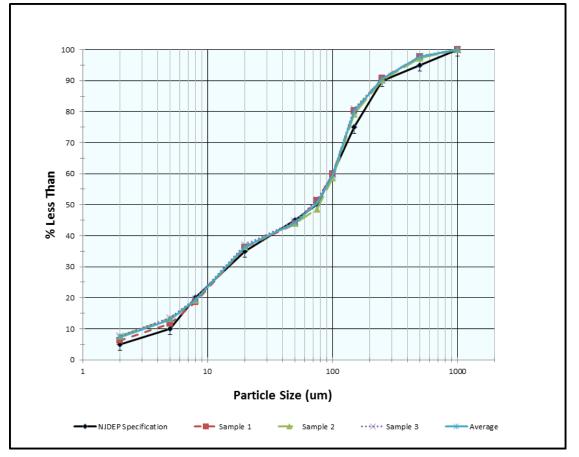
The final test sediment particle size distribution (PSD) met the required tolerances of the Canada ETV Procedure for Laboratory Testing of Oil-Grit Separators (Rev. June 6, 2014 – Ver. 3.0). Three replicate samples of the test sediment blend were sent to a qualified 3rd party analytical laboratory for analysis of the sediment PSD in a manner consistent with ASTM method D422-63 (Reapproved 2007), "Standard Test Method for Particle-Size Analysis of Soils". The samples were composite samples created by taking samples throughout the blending process and in various positions within the blending drum.

Removal Efficiency Testing

The objective of this study was to establish a baseline for treatment performance (removal efficiency) over a range of flow rates up to 125% of the maximum treatment flow rate (MTFR) with an influent suspended sediment concentration (SSC) of 200 mg/L. Sediment removal efficiency testing was conducted at 25%, 50%, 75%, 100% and 125% MTFR. The sediment feed rate had a coefficient of variance (COV) \leq 0.10 and the influent sediment concentration was maintained within ± 20 mg/L of target, based on the average sediment feed rate and water flow rate for the run. The water flow rates were held within 10% of target with a COV of 0.03 and water temperatures were maintained below 25°C.

A minimum of eight influent background samples were taken at regular intervals. A minimum of 15 effluent samples were collected during each test run. The first sample was collected after a minimum of 3 detention times (DT), at which time a constant flow and sediment feed were established. The interval between sequential effluent samples was evenly spaced; however, when the test sediment feed was interrupted for measurement, the next effluent sample was collected after waiting at least 3 DT to re-establish equilibrium conditions.

The system detention time was determined empirically by measuring the height of water in the containment cell during clean water flow at the chosen flow rate. The wet volume of the system was calculated and the approximate volume of the stones was subtracted. The remaining volume was the estimated water volume in the containment cell, which was divided by the flow rate to give detention time.


The sediment feed rate was checked using six calibration samples taken at evenly spaced intervals over the duration of each test run. Each sample was collected over an interval timed to the nearest 0.01 second and was a minimum of 0.1 liters, or the collection interval did not exceed one minute, whichever came first. The COV of the samples was < 0.10. The feed rate samples were also used to calculate an influent concentration in order to double check the concentration calculated by mass balance.

Performance claims

When installed with Terratex HPG 550 and Terratex N10 geotextiles, and tested with silica sediment having a particle size distribution conforming to the *Canadian Environmental Technology Verification Program Procedure for Laboratory Testing of Oil-Grit Separators*, the Cultec Recharger® I50XLHD Separator RowTM will remove at least the following fractions of suspended sediment at the corresponding flow rates: 80% at 24 gpm, 77% at 49 gpm, 73% at 73 gpm, 70% at 97 gpm, and 65% at 121 gpm. These performance claims are verified statistically at a 95% level of confidence.

Performance results

Verification Statement – Cultec, Inc. – Cultec Separator™ Row Filtration System Registration: GPS-ETV_VR2021-03-31_v2 Page 6 of 8

SUSPENDED SEDIMENT REMOVAL EFFICIENCY AT A FLOW RATE OF 24 GPM

					Suspe	ended S	Sedime	ent Co	ncentra	ation (I	ng/L)				
Sample #	Ι	2	3	4	5	6	7	8	9	10		12	13	14	15
Effluent	39.6	38.7	39.2	39.8	39.1	39.5	41.7	41.9	41.1	42.4	43.2	41.6	40.8	41.1	41.6
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	37.6	36.7	37.2	37.8	37.1	37.5	39.7	39.9	39.1	40.4	41.2	39.6	38.8	39.1	39.6
Average Adjus	sted Effl	uent Co	oncentra	ation	3	8.8 mg/	L		Remo	oval Effic	iency			80.2%	

SUSPENDED SEDIMENT REMOVAL EFFICIENCY AT A FLOW RATE OF 48 GPM

					Susp	ended S	Sedime	ent Co	ncentra	ation (r	ng/L)				
Sample #	-	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	47.I	47.0	47.I	46.8	47.3	47.3	49.0	50.I	49.5	50.4	49.I	50.2	52.2	49.7	51.8
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	45.I	45.0	45.I	44.8	45.3	45.3	47.0	48.I	47.5	48.4	47.I	48.2	50.2	47.7	49.8
Average Adjus	sted Effl	uent Co	oncentra	tion	4	7.0 mg/	L		Remo	oval Effic	iency			76.9%	

SUSPENDED SEDIMENT REMOVAL EFFICIENCY AT A FLOW RATE OF 73 GPM

					Suspe	ended S	Sedime	ent Co	ncentra	ation (I	mg/L)				
Sample #	-	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	54.3	55.2	53.3	53.8	55.8	55.8	55.3	54.5	53.5	56.2	56.4	56.5	58.4	56.8	57.7
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	52.3	53.2	51.3	51.8	53.8	53.8	53.3	52.5	51.5	54.2	54.4	54.5	56.4	54.8	55.7
Average Adjus	ted Efflu	ient Co	ncentra	tion	5	3.6 mg/	L		Remo	oval Effic	iency			73.3%	

SUSPENDED SEDIMENT REMOVAL EFFICIENCY AT A FLOW RATE OF 97 GPM

					Suspe	ended S	Sedime	ent Co	ncentra	ation (I	mg/L)				
Sample #	-	2	3	4	5	6	7	8	9	10		12	13	14	15
Effluent	58.4	59.4	59.0	61.2	61.6	61.1	58.9	60.4	59.9	63.9	63.3	62.5	61.9	61.0	61.0
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	56.4	57.4	57.0	59.2	59.6	59.1	56.9	58.4	57.9	61.9	61.3	60.5	59.9	59.0	59.0
Average Adjust	ed Efflu	ent Cor	ncentrat	ion	5	8.9 mg/	L		Remo	oval Effic	iency			70.0 %	

SUSPENDED SEDIMENT REMOVAL EFFICIENCY AT A FLOW RATE OF 121 GPM

					Suspe	ended S	Sedime	ent Co	ncentra	ation (I	mg/L)				
Sample #	I	2	3	4	5	6	7	8	9	10	П	12	13	14	15
Effluent	72.0	72.8	71.7	72.1	70.1	72.1	69.3	72.3	77.2	71.0	70.7	72.7	71.1	70.4	73.0
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	70.0	70.8	69.7	70.1	68.I	70.1	67.3	70.3	75.2*	69.0	68.7	70.7	69.1	68.4	71.0
Average Adjust	ted Efflu	ent Cor	ncentrat	ion	6	9.9 mg/	L		Remo	oval Effic	iency			65.3%	

*Note: This data point was considered to be a significant outlier and was therefore omitted as part of the overall statistical calculations to verify performance at a 95% level of confidence.

Verification

This verification was completed by the Verification Expert, the Centre for Advancement of Water and Wastewater Technologies ("CAWT"), contracted by GLOBE Performance Solutions, using the International Standard ISO 14034:2016 Environmental Management -- Environmental Technology Verification (ETV). Data and information provided by Cultec, Inc. to support the performance claim included the final test report prepared by Good Harbour Laboratories of Mississauga, Ontario and dated November 9, 2017. The test report is based on testing completed in compliance with the requirements of ISO/IEC 17025.

What is ISO I 4034:2016 Environmental Management – Environmental Technology Verification (ETV)?

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV), and was developed and published by the *International Organization for Standardization* (ISO). The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

For more information on the Cultec Separator™ Row Filtration System please contact:

Cultec, Inc. 878 Federal Road Brookfield, CT 06804 USA Tel: 203.775.4416 / Toll Free: 1.800.4.CULTEC custservice@cultec.com www.cultec.com

For more information on ISO 14034:2016 / ETV please contact:

GLOBE Performance Solutions 404 – 999 Canada Place Vancouver, BC V6C 3E2 Canada Tel: 604-695-5018 / Toll Free: 1-855-695-5018 etv@globeperformance.com www.globeperformance.com

Limitation of verification: Registration: GPS-ETV_VR2021-03-31_v2

GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

Hydroworks Sizing Summary

132 College Street, Smithville OGS

08-08-2024

Recommended Size: HydroDome HD 10

Hydroworks Sizing Program Version 5.8.5

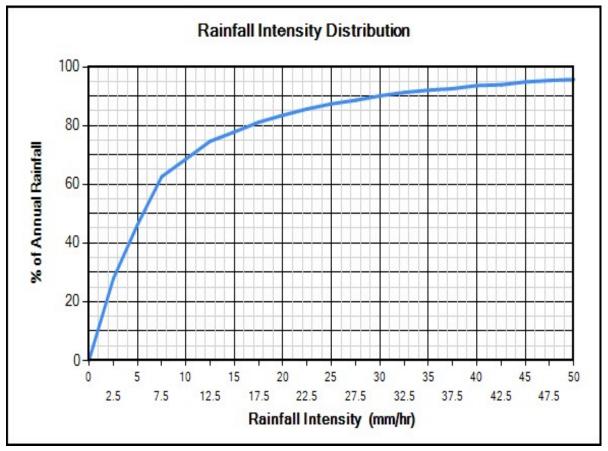
A HydroDome HD 10 is recommended to provide 80 % annual TSS removal based on a drainage area of 1.95 (ha) with an imperviousness of 67 % and Hamilton Airport, Ontario rainfall for the ETV particle size distribution.

The recommended HydroDome HD 10 treats 100 % of the annual runoff and provides 82 % annual TSS removal for the Hamilton Airport rainfall records and ETV particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .304 (m3/s) Is less than the full pipe flow of .3 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 338 (mm) above the crown of the 525 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

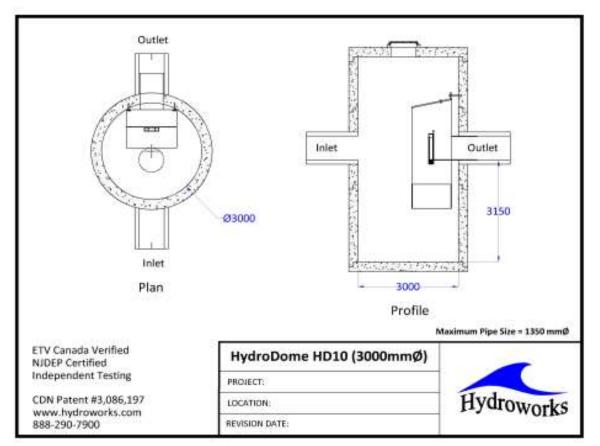

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

1	ns Rainfall S	Site TSS P	SD TSS Load Site	e Storage By-Pass	Custom CA	D Video	Other			
Site Parameter	Los II Lines constant line is		Units	Rainfall Statio			1 9 8 9 9			
	.з Г	1.95	L US	Hamilton Aire			0.	ntario		
Area (ha)	1	1.95	1_ 0.5.	A second						
Imperviousn	ess (%)	67	Metric	1970 To 2006	5		Rainfall	Fimestep	= 60 m	nin.
roject Title 1	32 College Stree	st Smithville			Outlet Pipe				- 20	
lines)		at, Onitrivite			Diam. (mm)	525 Pe	ak Design	Flow (m3/	s) (0.304
lo Io	GS				Slope (%)	0.5				
ETV Lab Test	ing Results	E	Post Treatment Re	charge		0.0				
vdroDome An	nual Sizino Res	sults			P	article Size	Distribution	6		
	nual Sizing Res	0			P	article Size Size (um)			•	
lydroDome An Model #	nual Sizing Res Qlow (m3/s)	sults Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)	P	article Size Size (um) 1	%	SG	-	
		0	Flow Capture (%) 100 %	TSS Removal (%) 49 %	P	Size (um)	% 5			
Model #	Qlow (m3/s)	Qtot (m3/s)	1	The Will Street of the Street of Street		Size (um) 1 4	% 5 5	SG 2.65 2.65		
Model # Unavailable	Qlow (m3/s) .304	Qtot (m3/s) .304	100 %	49 %		Size (um) 1 4 6	% 5 5 5	SG 2.65 2.65 2.65		
Model # Unavailable HD 4	Qlow (m3/s) .304 .304	Qtot (m3/s) .304 .304	100 % 100 %	49 % 58 %		Size (um) 1 4 6 7	% 5 5 5 5 5	SG 2.65 2.65 2.65 2.65		
Model # Unavailable HD 4 HD 5	Qlow (m3/s) .304 .304 .304	Qtot (m3/s) .304 .304 .304	100 % 100 % 100 %	49 % 58 % 64 %		Size (um) 1 4 6 7 18	% 5 5 5 5 15	SG 2.65 2.65 2.65 2.65 2.65 2.65		
Model # Unavailable HD 4 HD 5 HD 6	Qlow (m3/s) .304 .304 .304 .304	Qtot (m3/s) .304 .304 .304 .304	100 % 100 % 100 % 100 %	49 % 58 % 64 % 69 %		Size (um) 1 4 6 7 18 45	% 5 5 5 15 10	SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65		
Model # Unavailable HD 4 HD 5 HD 6 Unavailable	Qlow (m3/s) .304 .304 .304 .304 .304 .304	Qtot (m3/s) .304 .304 .304 .304 .304	100 % 100 % 100 % 100 % 100 %	49 % 58 % 64 % 69 % 73 %		Size (um) 1 4 6 7 18 45 70	% 5 5 5 15 10 5	SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65		
Model # Unavailable HD 4 HD 5 HD 6 Unavailable HD 8	Qlow (m3/s) .304 .304 .304 .304 .304 .304 .304	Qtot (m3/s) .304 .304 .304 .304 .304 .304 .304	100 % 100 % 100 % 100 % 100 % 100 %	49 % 58 % 64 % 69 % 73 % 77 %		Size (um) 1 4 6 7 18 45	% 5 5 5 15 10	SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65		

TSS Particle Size Distribution

	Dimensions Rai	infall Site T	SS PSD TSS Load	Site Storage By	/-Pass Custom CAD	Video Other
SS P	article Size Dist	ribution				
	Size (um)	%.	SG		Notes:	TSS Distributions
	1	5	2.65		1. To change data	ETV Canada
	4	5	2.65		just click a cell and type in the new	C Standard HDS Design
	6	5	2.65		value(s)	C Alden Laboratory
	7	5	2.65		2. To add a row just go to the bottom of	C 0K110
	18	15	2.65		the table and start typing.	C Toronto
	45	10	2.65		3. To delete a row.	C Ontario Fine
	70	5	2.65		select the row by clicking on the first	C ETV Canada (Calgary)
	90	10	2.65		pointer column,	C Calgary Forebay
	125	15	2.65		then press delete	C Kitchener
	200	15	2.65		4. To sort the table click on one of the	C User Defined
	400	5	2.65		column headings	
	850	5	2.65			Clear
1						Clear


Site Physical Characteristics

1.26	oduct l	Inits CA	(F) - 2005	eo Help	·						
ain Di	mensions	Rainfall S	ite TS	S PSD T	SS Load	Site Storage	By-Pass	Custom	CAD	Video Oth	ner
Catchm	ent Parame	ters							Maintenan	ce	
Widt	1 (m)	75	In	nperv. Man	nings n		.015	F	requency	(months)	12
ſ	Default Widt	h	P	erv Mannir	ıgs n		.25				
			In	np. Depres	s. Storage	(mm)	.51	-			
Slope	e (%)	2		A	ss. Storage		5.08	-			
					197	33 35 N					
	aporation (n			T.M.		Tura	1 August				D
Jan 0	Feb 0	Mar 0	Apr 2.54	May 2.54	Jun 3.81	Jul 3.81	Aug 3.81	Sep 2.54	Oct 2.54	Nov 0	Dec
	1.00		1	11.	1. access	W			Aless also	10	
Infiltrati	on				Ca	atch Basins	-	55		Kees many	
Max.	nfiltation Ra	ste (mm/hr)	1	63.5		# of Catch I	oasins		9	exclu	II parameters ding input
Min. I	nfiltration R	ate (mm/hr))	10.16						catchr	nent width.
Infiltra	tion Decay	Rate (1/s)		.00055		onstant Bas	eflow	<u></u>			10111
32.53	ation Regen	Rate (1/s)		.01		Roof Runo <mark>f</mark>	(m3/s)			Defa	ult Values
Infiltra			8								

Dimensions And Capacities

odel	d Capacities Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)	
HD 3	0.91	1.22	123	0.5	0.8	
HD 4	1.22	1.37	266	0.9	1.6	
HD 5	1.52	1.68	483	1.7	3.1	
HD 6	1.83	1.98	803	2.9	5.2	
HD 7	2.13	2.29	1226	4.6	8.2	
HD 8	2.44	2.59	1863	6.8	12.1	
HD 10	3.05	3.2	3617	13	23.3	
HD 12	3.66	3.81	6224	22.2	40	
h = Depth i	from outlet invert to	inside bottom of t	ank]	

Generic HD 10 CAD Drawing

TSS Buildup And Washoff

File Product Units CAD Video Die Rain Company Compa Iain Dimensions Rainfall Site TSS PS	Help TSS Load Site Storage By-Pass Custom CAD Video Other	
TSS Buildup Power Linear Fxponential Michaelis-Menton No Buildup Required TSS Washoff Rating Curve (no upper limit) Rating Curve (limited to buildup)	Street Sweeping Soil Erosion Efficiency (%) 30 Start Month May Stop Month Sep Frequency (days) 30 Available Fraction 3	
Limit (kg/ha) 28.02 (Values Washoff Parameters TSS Buildup oefficient .0855 kponent 1.1 C Based on Curb Length	

Upstream Quantity Storage

Hyd			izing Program - HydroDo	ome		8 23
File		duct Units CAD	Video Help			
Main	Dime	ensions Rainfall Site	TSS PSD TSS Load	Site Storage	By-Pass Custom CAD Video Other	
0	Quantit	ty Control Storage	-			
		Storage (m3)	Discharge (m3/s)			
	•	0	0			
					Clear	

Other Parameters

Image: Second state of the	Pass Custom CAD Video Other HydroDome Design I High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table HD Hydraulics HD Model HD 10 Custom Insert Size			
No TSS Removal extrapoloation for lower flows or inter-event periods Lab Testing Use NJDEP Lab Testing Results Vise ETV Canada Lab Testing Results TSS Removal Results Required TSS Removal C Choose Model # TSS Removal (%) 80.0 Enter required	TSS Removal (%)			

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.8.5 Copyright Hydroworks, LLC, 2024 1-800-290-7900 www.hydroworks.com

Verification Statement

Hydroworks HydroDome HD3 Oil-Grit Separator Registration number: (V-2021-09-02) Date of re-issue: 2023-05-17

Technology type	Oil-Grit Separator				
Application	Technology to remove oil, sediment, trash and debris from storm- water and snowmelt runoff as well as other pollutants that attach to sediment particles, such as nutrients and metals.				
Company	Hydroworks, LLC.				
Address	257 Cox St., Roselle, NJ 0720	3 USA	Phone +1-888-290-7900		
Website	https://hydroworks.com	E-mail	gbryant@hydroworks.com		

Verified Performance Claims

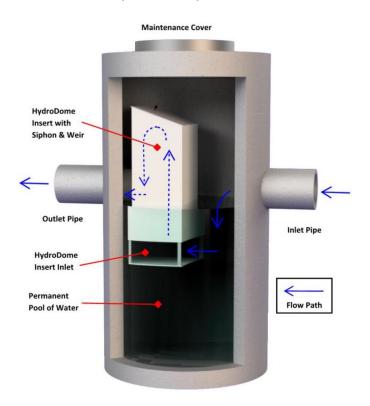
The Hydroworks HydroDome HD3 Oil-Grit Separator (OGS) was tested by Alden Research Laboratory, Holden, Massachusetts, USA in 2021. The performance test results were verified by 'The Sir Sandford Fleming College of Applied Arts and Technology's Centre for Advancement of Water and Wastewater Technologies' (CAWT) following the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. The following performance claims were verified:

Sediment removal test: The Hydroworks HydroDome HD3 OGS device, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L and particle size distribution of 1-1000 μ m, removed 83.9, 77.6, 68.4, 66.9, 59.4, 52.4, and 46.0 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m² respectively.

Scour test: The Hydroworks HydroDome HD3 OGS device with 15.2 cm (6 inch) of test sediment preloaded onto a false floor reaching 50% of the manufacturer's recommended maximum sediment sump storage depth, generated corrected effluent sediment concentrations on average of 0.54, 0.70, 0.0, 0.0, and 0.11 mg/L at 5-min duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m², respectively.

Light liquid re-entrainment test: The Hydroworks HydroDome HD3 OGS with surrogate lowdensity polyethylene beads preloaded within the inner chamber, representing a floating light-liquid volume equal to a depth of 50.8 mm (2 inch) over the sedimentation area, retained 100, 100, 100, 100, and 99.7 percent of loaded beads by mass during the 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m², respectively.

The above verified claims can be applied to other units smaller or larger than the tested unit, provided that the untested units meet the scaling rule specified in the Procedure for Laboratory Testing of Oil Grit Separators (Version 3.0, June 2014)



Technology Application

HydroDome is a hydrodynamic separator that provides benefits for both water quality and water quantity (i.e., flow control). HydroDome combines the function of separator, hood, and flow control with active storage to provide a multi-purpose stormwater management solution in one structure. HydroDome also functions as an oil separator due to the submerged inlet design and the fact that the design raises the water level with flow to maximize the distance between any floatables (oil, trash) and the discharge entrance to the HydroDome.

Technology Description

HydroDome comes complete and slides into the outlet pipe from a drainage structure and is secured to the wall with anchor bolts. It consists of a siphon with flow control, that regulates the water level in the structure and the flow rate in the outflow, and an optional high flow weir. A schematic of the Hydroworks HydroDone OGS is shown in Figure 1.

Figure 1: Schematic of the Hydroworks HydroDome Oil-Grit Separator

The siphon raises the water level to a pre-determined level without allowing water to exit the structure. The raised water level provides:

- Greater time for initial total suspended solids (TSS) removal and for floatables to prevent reentrainment in the flow,

- Additional dilution to reduce effluent concentrations of any pollutants, and

- A greater volume, or buffer, of water to prevent scour of previously settled solids.

Water flows into the device through horizontal openings at the bottom of the HydroDome. Water then must travel upwards through the siphon. A coarse foam screen is located at the entrance to the siphon inlet to provide secondary protection from its clogging (the outer housing of the HydroDome and submerged inlet provide primary protection). Once the water level reaches a predetermined height, the siphon begins to engage, and water flows out of the structure downstream. The siphon flow is controlled by an orifice, whose size can be changed to provide the desired flow control. The water level continues to rise or begins to lower depending on the rate of flow from the orifice compared to the inflow of water to the structure.

(erifi Global)

Hydroworks HydroDome HD3 Oil Grit Separator Verification Statement

An optional weir above the siphon provides a high flow path to prevent the system from surcharging. In cases where parking lot storage is desired, there would not be a high flow weir. A scour protection plate minimizes scour by preventing upward velocities/flow from the structure floor during periods of peak flow. Therefore, HydroDome combines the function of separator, hood, and flow control with active storage to provide a multi-purpose stormwater management solution in one structure.

Description of Test Procedure

For the purposes of this verification, a Hydroworks HydroDome 3-ft diameter (HD3) stormwater treatment unit was tested. The HD3 test unit was a full-scale 3 ft (0.91 m) diameter tank with an internal treatment hood that included a high flow weir. The test tank was fabricated from plastic and included 18-inch (457 mm) diameter inlet and outlet pipes, oriented along the center-line of the tank. The pipe inverts were located 48 inches (1.22 m) above the sump floor and were set with 1% slopes. The 100% and 50% sediment sump storage depths were 12 inches (0.305 m) and 6 inches (0.152 m), respectively. The effective treatment sedimentation area was 7.07 ft² (0.656 m²).

The test data and results for this verification were obtained from independent testing conducted at Alden Research Laboratory in accordance with the *Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014)*¹. Use of this procedure is intended to ensure that technologies in this category are subjected to stringent requirements in generating verifiable performance test data.

The verification plan was followed with one minor variance from the *Procedure*. This variance includes the required minimum amount of test sediment to be fed into the test unit for each tested surface loading rate (SLR). Although the *Procedure* requires a minimum of 11.3 kg of test sediment, during the 40 L/min/m² SLR test, only 6.45 kg was fed into the unit, which is 4.85 kg less than the specified minimum. This variance to the *Procedure* was agreed to by Toronto and Region Conservation Authority (TRCA), the author of the *Procedure*, based on previous conversations with Alden Labs, noting that the length of time to conduct the test with 11.3 kg of sediment at 40 L/min/m² would be over 36 hours.

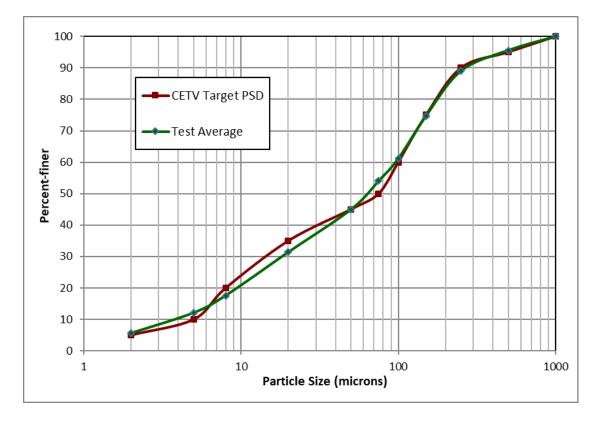
Verification Results

CAWT verified the performance test data and other information pertaining to the HydroDome HD3 Oil-Grit Separator. A Verification Plan was prepared to guide the verification process based on the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol.

The test sediment consisted of ground silica (1 - 1000 micron) with a specific gravity of 2.65, uniformly mixed to meet the particle size distribution specified in the testing procedure.

The "*Procedure for Laboratory Testing of Oil Grit Separators*" (TRCA, 2014) requires that the threesample average of the test sediment particle size distribution (PSD) meet the specified PSD. The allowable tolerance of 6% variation from the specified PSD curve was met at each discrete particle size tested and the d50 was finer than 75 μ m.

Comparison of the individual sample and average test sediment PSD to the specified PSD is shown in Figure 2. This figure indicates that the test sediment used for the removal and scour tests met the above-mentioned criteria. The median particle size was 64 µm.


Samples from test sediment batches used for each run met the specified PSD within the required tolerance thresholds.

The capacity of the HydroDome HD3 device to retain sediment was determined at seven surface loading rates using the modified mass balance method. This method involved measuring the mass and particle size distribution of the injected and retained sediment for each test run.

¹ The *Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014)* was originally prepared by the Toronto and Region Conservation Authority (TRCA) in association with a 31 member advisory committee from various stakeholder groups.

Hydroworks HydroDome HD3 Oil Grit Separator Verification Statement

Figure 2 - Average particle size distribution (PSD) of the test sediment used for the sediment removal and scour test compared to the specified PSD

Performance was evaluated with a false floor simulating the technology filled to 50% of the manufacturer's recommended maximum sediment storage depth. The test was carried out with clean water that maintained a sediment concentration below 20 mg/L. Based on these conditions, removal efficiencies for individual particle size classes and for the test sediment, as a whole, were determined for each of the tested surface loading rates (Table 1).

In some instances, the removal efficiencies were above 100% for certain particle size fractions. These discrepancies are not unique to any one test laboratory and are attributed to errors relating to the blending of sediment, collection of representative samples for laboratory submission, and laboratory analysis of PSD. Due to these errors, caution should be exercised in applying the removal efficiencies by particle size fraction for the purposes of sizing the tested device (see Bulletin # CETV 2016-11-0001).

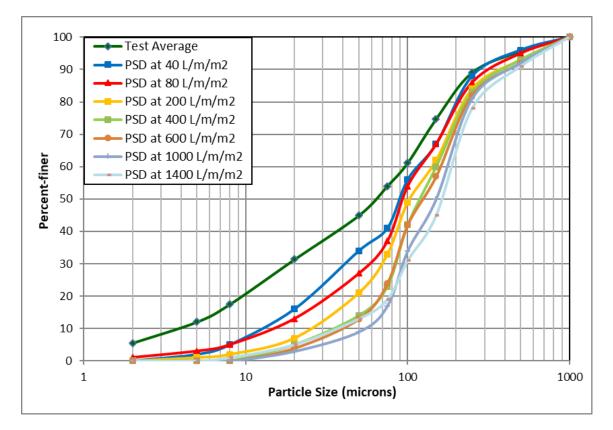

Particle Range (µm)	40 L/min/m ²	80 L/min/m ²	200 L/min/m ²	400 L/min/m ²	600 L/min/m ²	1000 L/min/m ²	1400 L/min/m ²	Average
>500	100%	125%	140%	140%	200%	200%	180%	155%
250-500	114%	129%	150%	143%	143%	183%	217%	154%
150-250	150%	136%	157%	153%	179%	221%	220%	174%
100-150	116%	126%	129%	148%	157%	162%	139%	140%
75-100	136%	155%	178%	190%	180%	170%	133%	163%
50-75	91%	100%	128%	270%	126%	82%	75%	125%
20-50	111%	97%	93%	51%	58%	42%	73%	75%
8-20	75%	79%	38%	34%	29%	17%	26%	42%
5-8	53%	34%	16%	7%	0%	0%	23%	19%
2-5	37%	29%	14%	0%	0%	0%	1%	12%

 Table 1 - Removal efficiencies (%) of the HydroDome HD3 Oil-Grit Separator for individual particle size classes at specified surface loading rates

Hydroworks HydroDome HD3 Oil Grit Separator Verification Statement

Figure 3 compares the particle size distribution (PSD) of the three-sample average of the test sediment to the PSD of the sediment retained by the HydroDome HD3 OGS device at each of the tested surface loading rates. As expected, the capture efficiency for fine particles was generally found to decrease as surface loading rates increased, particularly in the 400 to 1400 $L/min/m^2$ range.

Figure 3 - Particle size distribution of sediment retained in the HydroDome HD3 Oil-Grit Separator in relation to the injected test sediment average

Table 2 shows the results of the sediment scour and re-suspension test for the HydroDome HD3 Oil-Grit Separator unit. The scour test involved preloading 15.2 cm (6 inches) of fresh test sediment into the sedimentation sump of the device. The sediment was placed on a false floor to mimic a device filled to 50% of the maximum recommended sediment storage depth.

	Measured Concentration at Each surface Loading Rate									
Effluent Sample	200	800	1400	2000	2600					
No.	L/min/m ²	L/min/m ²	L/min/m ²	L/min/m ²	L/min/m ²					
1	1.2	0.3	0.0	0.0	0.0					
2	0.7	0.0	0.0	0.0	0.0					
3	0.5	0.0	0.0	0.0	0.5					
4	0.1	3.2	0.0	0.0	0.0					
5	0.3	0.0	0.0	0.0	0.0					
Average	0.5	0.7	0.0	0.0	0.1					

Hydroworks HydroDome HD3 Oil Grit Separator Verification Statement

Clean water was run through the device at five surface loading rates over a 30-minute period. Each flow rate was maintained for 5 minutes with a one-minute transition time between flow rates. Effluent samples were collected at one minute sampling intervals and analyzed for suspended solids concentration (SSC) and PSD by recognized methods. The effluent samples were subsequently adjusted based on the background concentration of the influent water.

Results showed average adjusted effluent sediment concentrations below 0.7 mg/L at all surface loading rates. The magnitude of scour is dependent on the internal flow patterns (velocity and turbulence) and water volume within the unit, which is related to the depth below the inlet and outlet. The HD3 possessed a large water volume in the sump and consequently, low velocity, which prevented incipient motion of the sediment of sufficient magnitude for scour to occur.

The average measured effluent scour sediment concentrations (adjusted for background) for each tested SLR were not adjusted for particle size based on the D5 of particles captured for the 40 L/min/m² removal efficiency test since there was negligible scour.

The capacity of the device to retain light liquid was determined at five surface loading rates in a range between 200 and 2600 L/min/m² using low-density polyethylene beads, Dow Chemical Dowlextm 2517, with a density of 0.917 g/cm³. This material was specified as the acceptable surrogate to represent floating liquid for a qualitative assessment of liquid behaviour during operation.

Performance was evaluated with a total of 32.8 litres (18.94 kg) of pellets preloaded into the treatment vault by introducing them into the crown of the influent pipe, to a volume equal to a depth of 50.8 mm (2 inch) over the sedimentation area of 0.66 m². The effluent was collected in flow-designated nets to allow for quantification of any re-entrained pellets for each test SLR. The collected pellets were dried and the mass of collected pellets was quantified for each SLR, as well as the overall test.

The recorded average flow data, as well as quantified volume and mass of collected pellets for each target SLR and overall test, is shown in Table 3. The maximum re-entrainment of 0.3% occurred at 2600 L/min/m². The total retention rate was 99.7%.

Light light	Light-liquid Re-Suspension Data					Starting	(grams)
Light-liqui	u ke-Susper	ISION Da	la	Volume	32.8	Mass	18938
Action	Time Stamp	Meter	Target Flow	Recorded Flow	cov	Collected Mass	Retained Mass
	(minutes)		(L/min/m ²)	(L/min/m ²)		(grams)	
Start D.A. Recording	0.0						
Flow set	1.0	4"	200	207	0.057	0	100.0%
Stop Collection	6.0			3.4%			
Flow set	7.0	4"	800	826	0.008	0	100.0%
Stop Collection	12.0			3.2%			
Flow set	13.0	6"	1400	1407	0.009	0	100.0%
Stop Collection	18.0			0.5%			
Flow set	19.0	6"	2000	2022	0.004	0.3	100.0%
Stop Collection	24.0			1.1%			
Flow set	25.0	6"	2600	2599	0.003	54.9	99.7%
Stop Collection	30.0			-0.1%			
14.						1.3	
Hydroworks HD 3					Total	56.5	99.7%

Table 3 - Light-liquid recorded flow and re-entrainment data
--

Quality assurance

Performance testing and verification of the HydroDome HD3 Oil Grit Separator were performed in accordance with the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. The verifier, CAWT, has confirmed that quality assurance requirements were addressed throughout the performance testing process and in the generation of performance test results. This includes reviewing all data sheets and data downloads, as well as overall management of the test system, quality control and data integrity.

In addition, QA/QC measures are documented in the *"Procedure for Laboratory Testing of Oil-Grit Separators"* (TRCA, 2014) to ensure results are accurate and precise, and that testing conducted by multiple vendors of the same category of technology are employing the same test method. The QA/QC measures include the use of certified laboratories, established test methods, calibration of equipment, tolerance limits for results variation, data checks during testing, and stringent documentation requirements.

Table 4 provides a summary of the acceptance criteria for particle size distribution, solids concentration in test water, water temperature, flow measurement equipment, flow rate variation, sediment feed, sediment moisture content, and sample analysis.

QC Parameter	Acceptance Criteria
Particle Size Distribution	Analyzed by a certified laboratory in accordance with ASTM D422-63(2007)e1. Percentages for size ranges vary by <6%, median < 75 um. PSD in water determined by ASTM D422-63(2007)e1 upon prior drying in designated pre-weighed nonferrous trays in compliance with ASTM D4959-07.
Solids concentration in test water	Suspended solids concentration (SSC) concentration of test water of less than 20 mg/L.
Water temperature	Temperature of water less than 25ºC.
Flow measurement equipment	Equipment calibration reports submitted to confirm that reported flow rate match actual flow rate.
	Flow rates from calibrated flow instruments recorded at no longer than 30 second intervals over the duration of the test.
Flow rate variation	Flow rates have COV < 0.04; maintained with ±10% of target flow rate.
Sediment feed	TSS concentration target = 200 mg/L with a tolerance limit of $\pm 25 \text{ mg/L}$. Injection location is 5 pipe diameters upstream of the inlet to the device, as per the <i>Procedure</i> . Six calibration samples taken over duration of each test run. The allowed Coefficient of Variance (COV) for the measured samples was 0.10.
Sediment moisture content	Determined by ASTM D4959-07 "Standard Test Method for Determination of Water (Moisture) Content of Soil By Direct Heating".
Sample analysis	Conducted by qualified laboratories using standard methods and meeting the requirements of ISO.

Summary of Verification Results and Verified Performance Claim for Hydroworks HydroDome HD3 Oil-Grit Separator (OGS)

In summary, the HydroDome HD3 Oil Grit Separator is designed to remove oil, sediment, trash and debris from stormwater and snowmelt runoff as well as other pollutants that attach to sediment particles, such as nutrients and metals. Verification of performance claims for the Hydroworks HydroDome HD3 Oil Grit Separator was conducted by CAWT based on independent third-party performance test results provided by Alden Research Laboratory, as well as additional information provided by Hydroworks.

Table 5 summarizes the verification results in relation to the technology performance parameters that were identified to determine the efficacy of the HydroDome HD3 Oil Grit Separator. The claims stated in Table 5 were verified using the modified mass balance method for sediment removal by measuring the total mass of sediment entering the unit and retained by the unit at prescribed surface loading rates. Effluent sampling was conducted every minute over a 30-minute duration for the scour test, using approved sampling methods as per the verification procedure. The light liquid re-entrainment test was conducted using a mass balance methodology which accounted for all the beads input, captured, and scoured from the separator.

Parameters	Verified Claims	Accuracy		
Sediment Removal	During the sediment removal test, the Hydroworks HydroDome HD3 OGS device, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L and particle size distribution of 1-1000 μ m, removed 83.9, 77.6, 68.4, 66.9, 59.4, 52.4, and 46.0 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m ² respectively	The sediment removal characteristics were quantified at various surface loading rates (SLRs), including particle size fractions, using a modified mass balance methodology. Performance results are presented as the true values.		
Sediment Scour	During the scour test, the Hydroworks HydroDome HD3 OGS device with 15.2 cm (6 inch) of test sediment preloaded onto a false floor reaching 50% of the manufacturer's recommended maximum sediment sump storage depth, generated corrected effluent sediment concentrations on average of 0.54, 0.70, 0.0, 0.0, and 0.11 mg/L at 5-min duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m2, respectively.	5 samples analyzed for sediment (n=5) at each flow rate There was negligible scour once corrected for background concentrations.		
Light Liquid Re-entrainment	During the light-liquid re-entrainment test, the Hydroworks HydroDome HD3 OGS with surrogate low-density polyethylene beads preloaded within the inner chamber, representing a floating light-liquid volume equal to a depth of 50.8 mm (2 inch) over the sedimentation area, retained 100, 100, 100, 100, and 99.7 percent of loaded beads by mass during the 5- minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m ² , respectively.	Performance results are presented as the true values. Under the "Procedure for Laboratory Testing of Oil-Grit Separators" (TRCA, 2014), the light-liquid re-entrainment test is also not amenable to statistical analysis as the tests were only conducted once at various flow rates following a mass balance procedure.		

 Table 5. Verified performance claims

What is ISO 14034?

The purpose of environmental technology verification is to provide a credible and impartial account of the performance of environmental technologies. Environmental technology verification is based on a number of principles to ensure that verifications are performed and reported accurately, clearly, unambiguously and objectively. The International Organization for Standardization (ISO) standard for environmental technology verification (ETV) is ISO 14034, which was published in November 2016.

Benefits of ETV

ETV contributes to protection and conservation of the environment by promoting and facilitating market uptake of innovative environmental technologies, especially those that perform better than relevant alternatives. ETV is particularly applicable to those environmental technologies whose innovative features or performance cannot be fully assessed using existing standards. Through the provision of objective evidence, ETV provides an independent and impartial confirmation of the performance of an environmental technologies by supporting informed decision-making among interested parties.

For more information on the HydroDome Oil Grit Separator, contact:	For more information on VerifiGlobal, contact:
Hydroworks LLC.	VerifiGlobal c/o ETA-Danmark A/S
257 Cox St., Roselle, NJ 07203 USA	Göteborg Plads 1, DK-2150 Nordhaven
T: +1-888-290-7900	T: +45 7224 5900
E: gbryant@hydroworks.com	E: info@verifiglobal.com
W: https://hydroworks.com	W: www.verifiglobal.com
Signed for Hydroworks:	Signed for VerifiGlobal: Thomas Bruun Managing Director
Graham Bryant	John Neate
Owner	Managing Director

NOTICE: Verifications are based on an evaluation of technology performance under specific, predetermined operational conditions and parameters and the appropriate quality assurance procedures. VerifiGlobal and the Verification Expert, CAWT, make no expressed or implied warranties as to the performance of the technology and do not certify that a technology will always operate as verified. The end user is solely responsible for complying with any and all applicable regulatory requirements. Mention of commercial product names does not imply endorsement.

VerifiGlobal and the Verification Expert, CAWT, provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

Hydroworks® HydroDome

Operations & Maintenance Manual

Version 1.0

Please call Hydroworks at 888-290-7900 or email us at support@hydroworks.com if you have any questions regarding the Inspection Checklist. Please email a copy of the completed checklist to Hydroworks at support@hydroworks.com for our records.

Introduction

The HydroDome (Figure 1) is a state-of-the-art hydrodynamic separator. HydroDome can be used for water quality and quantity flow control if desired.

Hydrodynamic separators remove solids, debris and lighter than water (oil, trash, floating debris) pollutants from stormwater. Hydrodynamic separators and other water quality measures are mandated by regulatory agencies (Town/City, State, Federal Government) to protect storm water quality from pollution generated by urban development (traffic, people) as part of new development permitting requirements.

As storm water treatment structures fill up with pollutants they become less and less effective in removing new pollution. Therefore, it is important that storm water treatment structures be maintained on a regular basis to ensure that they are operating at optimum performance. The HydroDome is no different in this regard and this manual has been assembled to provide the owner/operator with the necessary information to inspect and coordinate maintenance of their HydroDome.

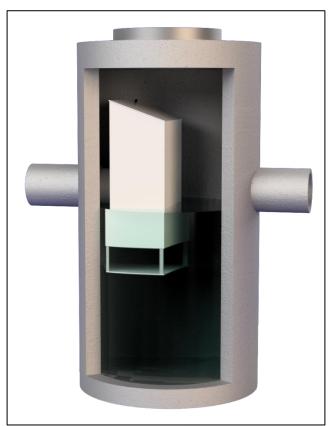


Figure 1. Hydroworks HydroDome

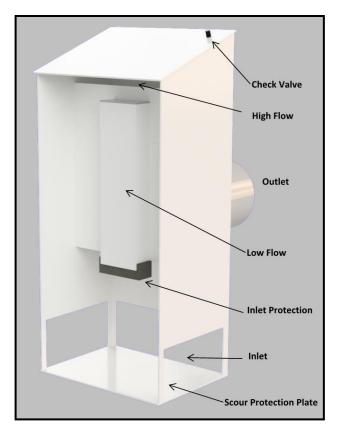


Figure 2 HydroDome Internal Components

Inspection

Procedure

Floatables

A visual inspection can be conducted for floatables by removing the cover/grate and looking down into the separator.

TSS/Sediment

Inspection for TSS build-up can be conducted using a Sludge Judge®, Core Pro®, AccuSludge® or equivalent sampling device that allows the measurement of the depth of TSS/sediment in the unit. These devices typically have a ball valve at the bottom of the tube that allows water and TSS to flow into the tube when lowering the tube into the unit. Once the unit touches the bottom of the device, it is quickly pulled upward such that the water and TSS in the tube forces the ball valve closed allowing the user to see a full core of water/TSS in the unit. Several readings (2 or 3) should be made at different locations of the structure to ensure that an accurate TSS depth measurement is recorded.

Operation

The water level during periods without rain should be near the outlet invert of the structure. If the water level remains near the top of the HydroDome this may suggest that there is an obstruction downstream of the HydroDome or that the inlet protection at the HydroDome may need to be cleaned.

Frequency

Construction Period

The HydroDome separator should be inspected every four weeks and after every large storm (over 0.5" (12.5 mm) of rain) during the construction period.

Post-Construction Period

The Hydroworks HydroDome separator should be inspected during the first year of operation for normal stabilized sites (grassed or paved areas). If the unit is subject to oil spills or runoff from unstabilized areas (storage piles, exposed soils), the HydroDome separator should be inspected more frequently (4 times per year). The initial annual inspection will indicate the required frequency of inspection and maintenance if the unit was maintained after the construction period.

Reporting

Reports should be prepared as part of each inspection and include the following information:

- 1. Date of inspection
- 2. GPS coordinates of Hydroworks unit
- 3. Time since last rainfall
- 4. Date of last inspection
- 5. Installation deficiencies (missing parts, incorrect installation of parts)
- 6. Structural deficiencies (concrete cracks, broken parts)
- 7. Operational deficiencies (leaks, elevated water level)
- 8. Presence of oil sheen or depth of oil layer
- 9. Estimate of depth/volume of floatables (trash, leaves) captured
- 10. Sediment depth measured
- 11. Recommendations for any repairs and/or maintenance for the unit
- 12. Estimation of time before maintenance is required if not required at time of inspection

A sample inspection checklist is provided at the end of this manual.

Maintenance

Procedure

The Hydroworks HydroDome unit is typically maintained using a vacuum truck. There are numerous companies that can maintain the HydroDome separator. Maintenance with a vacuum truck involves removing all of the water and sediment together. The water is then separated from the sediment on the truck or at the disposal facility.

The area around the HydroDome provides clear access to the bottom of the structure (Figure 3). This is the area where a vacuum hose would be lowered to clean the unit.

In instances where a vacuum truck is not available other maintenance methods (i.e. clamshell bucket) can be used, but they will be less effective. If a clamshell bucket is used the water must be decanted prior to cleaning since the sediment is under water and typically fine in nature.

The local municipality should be consulted for the allowable disposal options for both water and sediments prior to any maintenance operation. Once the water is decanted the sediment can be removed with the clamshell bucket.

Maintenance of a Hydroworks HydroDome unit will typically take 1 to 2 hours depending on size of unit and using a vacuum truck. Cleaning may take longer for other cleaning methods (i.e. clamshell bucket).

Inlet protection (Figure 2) in the form of a coarse foam screen is located at the inlet to the siphon opening in the HydroDome to ensure the opening does not become clogged. Although it is not anticipated that the inlet protection will have to be replaced on a regular basis since the inlet protection is protected by the submerged entrance to the HydroDome and is backflushed by the siphon after each storm , the inlet protection should be checked each time the HydroDome is inspected or maintained. The inlet protection is removable and should be rinsed with water to ensure any debris caught on the protection is discarded. Unless damaged, the inlet protection can be reinstalled. A replacement piece can be bought through Hydroworks and/or retail stores. Hydroworks can provide information on the inlet protection and where it can be bought. A sign that the inlet protection needs cleaning/replacement would be a water level near the crown of the outlet pipe in the structure during periods with no flow (i.e. unit does not drain down to the pipe invert).

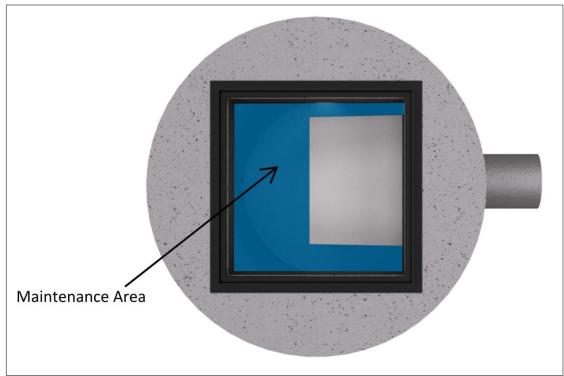


Figure 3. HydroDome Maintenance Access

Frequency

Construction Period

A HydroDome separator can fill with construction sediment quickly during the construction period. The HydroDome must be maintained during the construction period when the depth of TSS/sediment reaches 24" (600 mm). It must also be maintained during the construction period if there is an appreciable depth of oil in the unit (more than a sheen) or if floatables other than oil cover over 50% of the area of the separator

The HydroDome separator should be maintained at the end of the construction period, prior to operation for the post-construction period.

Post-Construction Period

The maintenance for sediment accumulation is required if the depth of sediment is 1 ft or greater in separators with standard water (sump) depths (Table 1).

There will be designs with increased sediment storage based on specifications or site-specific criteria. Please contact Hydroworks at 888-290-7900 to inquire whether your HydroDome was designed with extra sump depth to extend the frequency of maintenance.

The HydroDome separator must also be maintained if there is an appreciable depth of oil in the unit (more than a sheen) or if floatables other than oil cover over 75% of the water surface of the separator.

Model	Diameter ft (mm)	Maintenance Sediment Depth in (mm)
HD 3	3 (900)	12 (300)
HD 4	4 (1200)	12 (300)
HD 5	5 (1500)	12 (300)
HD 6	6 (1800)	12 (300)
HD 7	7 (2100)	12 (300)
HD 8	8 (2400)	12 (300)
HD 10	10 (3000)	12 (300)
HD 12	12 (3600)	12 (300)

 Table 1 Standard Dimensions for Hydroworks HydroDome Models

HYDRODOME INSPECTION SHEET

Date Date of Last Inspection			-	
Site City State Owner			-	
GPS Coordinates			-	
Date of last rainfall			-	
Site Characteristics Soil erosion evident Exposed material storage Large exposure to leaf little High traffic (vehicle) area			Yes	No
Improperly installed outlet Internal component damage Floating debris in the sepa Large debris visible in the Concrete cracks/deficience Exposed rebar	ge (cracked, broken, loose pieces irator (oil, leaves, trash) separator es evel close to top of HydroDome) not at outlet pipe invert)) "	Yes * * ** ** ** ** ** ** ** ** ** ** *** *** ***	No
Routine Measurements Floating debris depth Floating debris coverage Sludge depth	< 0.5" (13mm) < 75% of surface area < 12" (300mm)	>0.5" 13 > 75% s > 12" (3	surface area	□ * □ * □ *

- * Maintenance required
- ** Repairs required
- *** Further investigation is required

Note: Inspections should not be made within 24 hours of a storm to allow the water to drain from the structure to assess a raised water level or water level seepage

Other Comments:
Hydroworks
Les works

Hydroworks[®] HydroDome

One Year Limited Warranty

Hydroworks, LLC warrants, to the purchaser and subsequent owner(s) during the warranty period subject to the terms and conditions hereof, the Hydroworks HydroDome to be free from defects in material and workmanship under normal use and service, when properly installed, used, inspected and maintained in accordance with Hydroworks written instructions, for the period of the warranty. The standard warranty period is 1 year.

The warranty period begins once the separator has been manufactured and is available for delivery. Any components determined to be defective, either by failure or by inspection, in material and workmanship will be repaired, replaced or remanufactured at Hydroworks' option provided, however, that by doing so Hydroworks, LLC will not be obligated to replace an entire insert or concrete section, or the complete unit. This warranty does not cover shipping charges, damages, labor, any costs incurred to obtain access to the unit, any costs to repair/replace any surface treatment/cover after repair/replacement, or other charges that may occur due to product failure, repair or replacement.

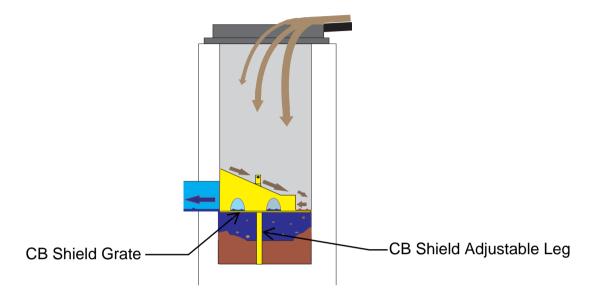
This warranty does not apply to any material that has been disassembled or modified without prior approval of Hydroworks, LLC, that has been subjected to misuse, misapplication, neglect, alteration, accident or act of God, or that has not been installed, inspected, operated or maintained in accordance with Hydroworks, LLC instructions and is in lieu of all other warranties expressed or implied. Hydroworks, LLC does not authorize any representative or other person to expand or otherwise modify this limited warranty.

The owner shall provide Hydroworks, LLC with written notice of any alleged defect in material or workmanship including a detailed description of the alleged defect upon discovery of the defect. Hydroworks, LLC should be contacted at 136 Central Ave., Clark, NJ 07066 or any other address as supplied by Hydroworks, LLC. (888-290-7900).

This limited warranty is exclusive. There are no other warranties, express or implied, or merchantability or fitness for a particular purpose and none shall be created whether under the uniform commercial code, custom or usage in the industry or the course of dealings between the parties. Hydroworks, LLC will replace any goods that are defective under this warranty as the sole and exclusive remedy for breach of this warranty.

Subject to the foregoing, all conditions, warranties, terms, undertakings or liabilities (including liability as to negligence), expressed or implied, and howsoever arising, as to the condition, suitability, fitness, safety, or title to the Hydroworks HydroDome are hereby negated and excluded and Hydroworks, LLC gives and makes no such representation, warranty or undertaking except as expressly set forth herein. Under no circumstances shall Hydroworks, LLC be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the HydroDome, or the cost of other goods or services related to the purchase and installation of the HydroDome. For this Limited Warranty to apply, the HydroDome must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and Hydroworks' written installation instructions.

Hydroworks, LLC expressly disclaims liability for special, consequential or incidental damages (even if it has been advised of the possibility of the same) or breach of expressed or implied warranty. Hydroworks, LLC shall not be liable for penalties or liquidated damages, including loss of production and profits; labor and materials; overhead costs; or other loss or expense incurred by the purchaser or any third party. Specifically excluded from limited warranty coverage are damages to the HydroDome arising from ordinary wear and tear; alteration, accident, misuse, abuse or neglect; improper maintenance, failure of the product due to improper installation of the concrete sections or improper sizing; or any other event not caused by Hydroworks, LLC. This limited warranty represents Hydroworks' sole liability to the purchaser for claims related to the HydroDome, whether the claim is based upon contract, tort, or other legal basis.


CB Shield Operations Manual

Installing CB Shield

It is important the catch basin frame and cover is aligned properly with the catch basin below

If it is misaligned it may be difficult to install the CB Shield insert

Determine the depth of the sump (i.e. the distance from the invert of the outlet pipe to the bottom of the catch basin). If the catch basin is in service the sump depth will be the depth of the water. The grate section of the CB Shield insert should be the same elevation as the water depth in the sump.

Adjust the leg of the CB Shield to achieve the appropriate elevation

The CB Shield is lowered into place with the rope attached to the top of the leg. The high side of the sloped plate should face the wall with the outlet pipe. (The incoming water should be directed to the wall furthest from the outlet)

The flexible plastic skirt around the outer edges of the CB Shield insert may interfere with some misaligned frame and grates. If so a slice can be cut into the skirt with a utility knife at the point of interference. Make sure the grate is at the desired level or remove CB Shield and re-adjust the leg length.

Inspecting a CB Shield Enhanced Catch Basin

Open grate

A lifting rope is attached to the top of the centered leg of the CB Shield insert. Lift and remove the insert. Inspect CB Shield for any possible damage. Quite often leaves will accumulate on the grate. This can actually improve the Shield's ability to capture sediment and assist in preventing leave litter from being washed down stream.

Use a Sludge Judge to measure the sediment depth in 4 - 6 locations of the sump.

If the sediment depth is 300mm – 600mm deep it is recommended that the unit be cleaned.

Cleaning a CB Shield Enhanced Catch Basin

Open grate and remove CB Shield with lift rope.

Clean catch basin as usual with a Vacuum truck.

Clean CB Shield (if needed) and re-install into catch basin.

If there is any significant damage to a CB Shield please send a picture and its location to CB Shield Inc. (info@cbshield.com).

Average Annual Sediment Removal Rates (%) using a CB Shield (based on ETV Sediment - 1 to 1000 micron Particle Size Distribution)

Area to CB	Imperviousness ¹ (%)									
(ha)	20%	35%	50%	65%	80%	100%				
0.02	57%	57%	57%	57%	56%	56%				
0.05	56%	56%	56%	55%	55%	54%				
0.10	56%	55%	54%	53%	52%	51%				
0.20	54%	53%	51%	49%	48%	46%				
0.30	53%	50%	48%	46%	45%	43%				
0.40	51%	48%	46%	44%	42%	40%				
0.50	50%	47%	44%	42%	40%	38%				
0.60	49%	45%	43%	40%	39%	36%				

Notes:

1. Runoff Coefficient 'C' is approximately equal to 0.05 + 0.9*Impervious Fraction.

2. Above chart is based on long term continuous hydrologic analysis of Toronto, Ontario (Bloor St) rainfall data.

3. Assumes 0.6 m sump in CB and that maintenance is performed (i.e. CB cleaning) when required by sediment/pollutant build-up or otherwise.

4. See accompanying chart for suggested maintenance scheduling - AND - get CB Shield Inc. to monitor it for you in field.

5. Sediment/Pollutant removal rates based on third party certified laboratory testing using ETV sediment (PSD analysis available on request).

6. See additional discussion regarding scour protection from CB Shield during more infrequent runoff events.

VERIFICATION STATEMENT

GLOBE Performance Solutions

Verifies the performance of

CB Shield[®] Stormwater Quality Device

Developed by CB Shield Inc. Oakville, Ontario, Canada

Registration: GPS-ETV_VR2022-10-31

In accordance with

ISO 14034:2016

Environmental Management — Environmental Technology Verification (ETV)

John D. Wiebe, PhD Executive Chairman GLOBE Performance Solutions

October 31, 2022 Vancouver, BC, Canada

Verification Body GLOBE Performance Solutions 404 – 999 Canada Place | Vancouver, B.C | Canada |V6C 3E2

Verification Statement – CB Shield Inc. – CB Shield[®] Stormwater Quality Device Registration: GPS-ETV_VR2022-10-31 Page 1 of 7

Technology description and application

The CB Shield[®] technology provides an environmental benefit of controlling sediment wash off at upstream locations. A standard catch basin has a 1.2 m waterfall inflow that churns up sediment in the sump below causing a very poor rate of sediment retention. The CB Shield is a flow deflection device that is inserted into a standard catch basin. It contains a sloped plate to direct runoff to the back wall of the catch basin, thereby dissipating the energy of stormwater inflows. The dissipation of inflow energy allows time for settling of sediment in stormwater runoff, increasing capture and reducing scour/ re-suspension of previously deposited sediment. Installation involves lowering the unit into a standard sized catch basin, and adjusting the height of the unit to the height of the permanent pool in the sump. The unit is manufactured with durable fiberglass requiring little maintenance and is estimated to be operated on the same cleanout schedule set for the catch basin. Due to high rates of scour in a standard catch basin, they are seldom filled beyond 40% of sump capacity. Clean out routines and expenses are optimized when the CB Shield captures and retains more sediment within the sump.

In an urban setting, there are typically approximately 5 catch basins installed per hectare. Assuming an equal distribution of overland flow, the tested flow rates for the scour and capture tests are meaningful in the context of 78 L/s per hectare and 42 L/s per hectare, respectively. The CB Shield's scour prevention performance has been evaluated in a laboratory setting relative to a standard unshielded catch basin for flows of 1.2 to 15.6 L/s. The device's sediment capture performance was evaluated for flows of 0.24 to 8.4 L/s. Hydraulically, the CB Shield has been tested to pass flows up to 60 L/s without any negative impacts (i.e., surcharging).

Performance conditions

Claim I: Capture test

The capture test is carried out in a laboratory with a constructed simulated street scape (1 % slope along its 2.4 m (96 inch) length, 2 % slope along its 1.2 m (48 inch) width). The catch basin was clean of any litter or debris. Capture performance was tested by comparing the mass of retained sediment with the influent sediment mass for each of six inflow rates: 0.24, 0.48, 1.20, 2.40, 6.00, and 8.40 L/s. The test sediment consisted of ground silica (1 – 1000 micron) with a specific gravity of 2.65, uniformly mixed to meet the particle size distribution specified in the *Procedure for Laboratory Testing of Oil Grit Separators (TRCA, 2014)*. Sediment was injected onto the street scape at a point just upstream of the catch basin to allow mixing prior to discharge while avoiding excessive buildup of sediment on the street scape. The sediment feed rate was adjusted for each flow rate to keep the influent concentrations consistent at 200 mg/L. The tests were conducted with a false floor set at 300 mm below the outlet invert simulating a catch basin that is filled to 50% of the manufacturer's recommended maximum sediment storage.

Claim 2: Scour test

The scour test was carried out in a laboratory on catch basins with and without the CB Shield® insert with a constructed simulated street scape (1 % slope along its 2.4 m (96 inch) length, 2 % slope along its 1.2 m (48 inch) width) and the catch basins clean of any litter or debris. A false floor was set in the catch basins at 254 mm below the outlet invert and preloaded with the test sediment (1- 1000 micron silica blend) test up to 150 mm below the outlet invert simulating a catch basin that is ³/₄ full of sediment. Water was filled to the effluent pipe and sediments were allowed to settle for 12-24 hours. Flows of 1.2, 4.8, 8.4, 12, and 15.6 L/s were tested on a continuous run with flow rates maintained at 5 minutes and a one minute transition time between flow rates. A minimum effluent grab sample of 500 mL was collected in 1000 mL jars by holding it under the entire effluent stream. A sample was taken at 30 seconds during the flow transitions to account for scour during the transition. Background samples were also taken at least once

every flow rate and effluent concentrations were corrected accordingly. Effluent flow was filtered using a $10\mu m$ filter and was recycled during the continuous 30 min test.

Performance claim(s)

Claim I: Capture test

During the sediment capture test, for a catch basin with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent sediment concentration of 200 mg/L, the catch basin with a CB Shield[®] insert removed 64, 59.9, 52.4, 42.6, 25.2, and 26.7 percent of influent test sediment by mass at inflow rates of 0.24, 0.48, 1.20, 2.40, 6.00, and 8.40 L/s, respectively.

Claim 2: Scour test

For a catch basin filled to three quarters of the manufacturer's recommended maximum sediment storage depth, with the CB Shield[®] insert, scouring of test sediment is at most 8% of the control catch basin during a continuous 30 minute scour test run with 5 minute duration inflows of 1.2, 4.8, 8.4, 12.0, and 15.6 L/s.

Performance results

The test sediment used to evaluate the CB Shield[®] technology was the same as that required by CETV for the evaluation of Oil Grit Separators. The comparison of the average test sediment PSD to the CETV specified PSD in Figure I indicates that the test sediment was finer than the specified PSD, with a median particle size of approximately 50 microns.

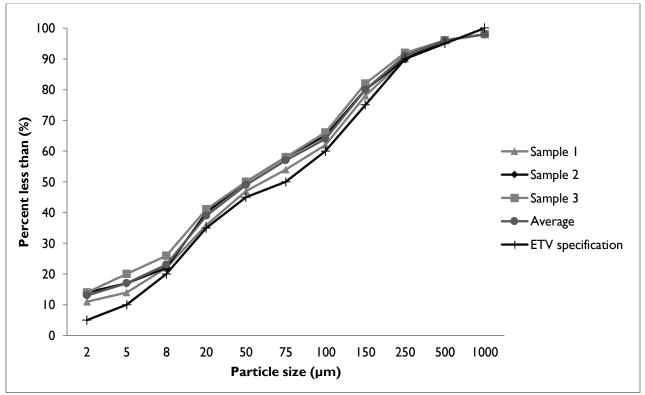


Figure 1. Test sediment particle size distribution (PSD) in relation to specified PSD.

The capacity of the device to retain sediment was determined at six surface loading rates using the modified mass balance method (see TRCA, 2014). During each of the tested flow rates, a known quantity

of sediment was injected at a constant rate onto a simulated street scape just upstream of the catch basin containing the CB Shield[®] technology. Based on these results, removal efficiencies were determined for each of the tested surface loading rates (Table I).

							0
Flow rate	(L/s)	0.24	0.48	1.20	2.40	6.00	8.40
Surface loading rate	(L/min/m²)	40	80	200	400	1000	1400
Total mass added	(kg)	1.217	2.302	5.072	5.150	4.921	4.812
Total mass captured	(kg)	0.778	1.378	2.659	2.196	1.238	I.287
Removal efficiency	(%)	64.0	59.9	52.4	42.6	25.2	26.7

Table I. Removal efficiencies (%) based on modified mass balance results at specified surface loading rates.

Table 2 shows the results of the sediment scour and re-suspension test. This test involved preloading fresh test sediment into the sedimentation area of two catch basins with and without the CB Shield technology, as described in Performance Conditions section above. Effluent samples were collected at one-minute sampling intervals and analyzed for Suspended Sediment Concentration (SSC). The mean sediment scour load of the catch basin with the CB shield insert was shown to be only 5% that of the control catch basin.

				CB Shield [®]			Control	
		C		Effluent			Effluent	
	Flow	Surface	Dum	suspended sediment		Bum	suspended sediment	
	rates	loading rate	Run time	concentration	Sadimont	Run time	concentration	Sadimont
Run		(L/min/m ²)	(min)	(mg/L)	load (g)	(min)	(mg/L)	load (g)
Null	(L/SEC)	(⊑/!!!!!/!!!-)	1:00	7.7	10au (g)	1:00	129.2	9.7
			2:00	6.5	0.47	2:00	185.3	13.9
			3:00	2.7	0.19	3:00	206.0	15.5
			4:00	3.1	0.17	4:00	176.0	13.2
			5:00	4.6	0.33	5:00	523.6	39.4
			6:00	0.6	0.04	6:00	495.7	41.8
1	1.2	200	0.00 Sum	0.0		Sum	775.7	133.5
	1.4	200	7:00	8.2	2.4	7:00	7164.0	2069.0
			8:00	4	1.2	8:00	8094.0	2338.0
			9:00	0.6	0.2	9:00	6762.0	1950.0
			10:00	0.6	0.2	10:00	4842.0	1393.0
			11:00	1.7	0.2	11:00	5266.0	1517.0
			12:00	0.6	0.2	12:00	4768.0	1457.0
2	4.8	800	Sum	0.0	4.7	Sum	17 00.0	10724.0
2	1.0	000	13:00	5.4	2.7	13:00	5429.0	2725.0
			14:00	10.0	5.0	14:00	6648.0	3332.0
			15:00	9.5	4.8	15:00	5025.0	2528.0
			16:00	10.0	5.0	16:00	5859.0	2939.0
			17:00	8.4	4.2	17:00	5019.0	2515.0
			18:00	8.2	4.1	18:00	3249.0	1628.0
3	8.4	1400	Sum			Sum		15667.0
			19:00	38.4	27.6	25:30	1886.0	1347.0
			20:00	79.4	57.2	26:30	1432.0	1027.0
			21:00	113.0	81.3	27:30	1167.0	844.0
			22:00	103.0	74.2	28:30	1508.0	1089.0
			23:00		82.1	29:30	1100.0	795.0
			24:00		66.5	30:30	708.0	512.0
4	12	2000	Sum			Sum		5614.0
			25:00	117.4	166.0	52:30	386.9	364.8
			26:00	211.6	198.1	53:30	252.7	237.8
			27:00	220.3	206.2	54:30	372.5	349.6
			28:00	187.8	175.8	55:30	332.4	311.7
			29:00	224.4	210.0	56:30	279.8	262.6
			30:00	199.2	186.5	57:30	310.2	290.9
5	15.6	2600	Sum		1142.6	Sum		1817.4

Table 2	Scour test	effluent	sediment	concentration	and loads
I able 2.	Scoul test	ennuent	sequinent	concenti ation	and ioaus.

Potential sources of error

- I. Background concentrations during the scour test were measured to be generally under 5 mg/L for both CB Shield[®] and Control treatments. However, background concentrations for the Control treatment at flow rates of 12.0 L/s and 15.6 L/s were substantially higher than the expected threshold of 20 mg/L as a result of inefficient recycling of water in the laboratory. Effluent samples were corrected based on the measured background concentrations since it was assumed that background sediments consisted of fine particles that were not captured in the device and flowed through as effluent concentration. If instead, some of the background sediments settled, the correction for all background sediments would bias against the relative performance of the CB Shield and therefore result in a more conservative evaluation of the CB Shield technology performance.
- 2. The reduction in scour at higher flow rates for the Control treatment suggested that the amount of preloaded sediment (10.2 cm depth) may have been insufficient to provide a continuous supply of fine particles for scour throughout the test. A similar decrease in scour at high flow rates was not observed for the CB Shield[®] treatment. This interpretation of the data implies that preloading both catch basins with additional sediment would likely have shown increased relative scour for the Control treatment, particularly at high flow rates. Although further testing would be required to verify this interpretation, it is reasonable to suggest that the test as conducted may have produced a smaller relative difference, resulting in a more conservative claim for the CB Shield technology.

Verification

This verification was first completed in October, 2016 and is considered valid for subsequent renewal periods every three (3) years thereafter. Data and information provided by CB Shield Inc. to support the performance claim included the following: Performance test report prepared by Good Harbour Laboratories of Mississauga, Ontario, dated 24 August 2016; the report was based on testing completed in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014).

The original verification was completed by the Toronto and Region Conservation Authority, contracted by GLOBE Performance Solutions, using the Canadian ETV Program's General Verification Protocol (June 2012) and taking into account ISO/FDIS 14034:2015(E). This ETV renewal is considered to meet the equivalency of an ETV verification completed using the International Standard ISO 14034:2016 Environmental management -- Environmental technology verification (ETV).

What is ISO I 4034:20 I 6 Environmental management – Environmental technology verification (ETV)?

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV) and was developed and published by the *International Organization for Standardization* (ISO). The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

For more information on the CB Shield[®] Stormwater Quality Device please contact:

CB Shield Inc. 39 Uplands Drive Brantford, ON N3R 6H5 Canada Tel: 519-212-9161 info@cbshield.com www.cbshield.com For more information on ISO 14034:2016 / ETV please contact:

GLOBE Performance Solutions 404 – 999 Canada Place Vancouver, BC V6C 3E2 Canada Tel: 604-695-5018 / Toll Free: 1-855-695-5018 etv@globeperformance.com www.globeperformance.com

Limitation of verification - Registration: GPS-ETV_VR2022-10-31

GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.