Hydrogeological Investigation Proposed residential Development Part of Lot 17, Concession 8,

Township of West Lincoln, Ontario

RVL Contracting Inc. 2 Main Street East, Box 429 Grimsby, Ontario L3M 4H8

January 3, 2025 02403079.000

RVL Contracting Inc.

Prepared by:

America Rolm

Amanda Burden, M. Sc. Environmental Scientist Environmental, GTA/SWO

Reviewed by:

gle

Paul L. Raepple, P. Geo. Senior Project Manager/Senior Hydrogeologist Environmental, GTA/SWO

Revisions and publications log.

REVISION No.		DESCRIPTION
0A	February 6, 2020	Final Report
0B	January 3, 2025	Revised Final Report

Distribution

1 digital copy	Ms. Christina VanLeeuwen
1 digital copy	Englobe

Property and Confidentiality

This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe Corp. and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe Corp. and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe Corp. and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Englobe Corp.'s subcontractors who have carried out on-site or laboratory work are duly assessed according to the purchase procedure of our quality system. For further information, please contact your project manager.

Table of Contents

1	Introduction1						
2	Scope of Work	2					
3 3.1	Background Official Plan Designation and Regulated Areas						
3.2	Site Description and Servicing	3					
3.3	Topography and Surface Drainage	4					
3.4	Local Geology and Hydrogeology	4					
3.5	Private Well Survey	5					
3.6	Results of Subsurface Investigation						
3.7	 3.6.1 Topsoil 3.6.2 Clayey Silt to Silty Clay 3.6.3 Groundwater Levels Results of Groundwater Sampling 	6 6					
4 4.1	Hydrogeological Assessment Summary of Hydrogeological Conditions						
4.2	Sewage Impact Assessment	8					
4.3	 4.2.1 Nitrate Impact Assessment 4.2.2 Tertiary treatment Requirements Preliminary Leaching Bed Design 	10					
	 4.3.1 Fill Based Absorption Trenches 4.3.2 Filter Bed 4.3.3 Shallow Buried Trench 4.3.4 Design Considerations 	12 12					
4.4	Leaching Bed Setback Requirements	13					
5	Conclusions and Recommendations	. 15					

FIGURES

Figure 1: Site Location Plan Figure 2: MECP Well Record Location Plan Figure 3: Test Pit Location Plan Figure 4: Well Survey Location Plan

TABLES

Table 1: Summary of MECP Well Records

Table 2: Summary of Private Well Survey

Table 3: Summary of Water Quality Analysis

APPENDICES

Appendix A: Draft Plan of Subdivision

Appendix B: Test Pit Logs and Grain Size Analysis

Appendix C: Well Survey Materials

Appendix D: Laboratory Certificates of Analysis

1 Introduction

Englobe Corp. (Englobe) was retained by Upper Canada Consultants to complete a hydrogeological investigation for a proposed residential severance for a 4.23-hectare (10.45 acres) lot with the legal description of Part Lot 17 Concession 8, in the Township of West Lincoln. This report has been updated based on the current site plan DWG. No. 19126-DP issues by Upper Canada Consultants, dated March 15, 2024. It is proposed to develop a 3.15 ha (7.78 acre) parcel for development for a residential subdivision consisting of six single detached residential lots with a remnant lands covering 1.08 ha (2.67 acres).

Under the current site plan, it is proposed to develop the property with six detached residential lots (2.72 ha) ranging in size from 0.40 ha to 0.56 ha (1,0 acre to 1.4 acres) with a storm water management block (0.14 ha), reserve lands (0.01 ha), and an internal ROW (0.28 ha). Under the current development plan, it is proposed to develop proposed residential lots with two storey detached residential dwellings with a building footprint covering 185 m². The proposed residential development is to be privately serviced with individual water supply wells and/or cisterns and subsurface sewage disposal.

The hydrogeological investigation was completed evaluate subsurface conditions including the shallow soil and groundwater conditions with regards to private sewage servicing. A septic impact assessment was competed to confirm the proposed residential lot size are self sufficient and to evaluate potential impacts to shallow groundwater.

2 Scope of Work

The following tasks were completed as part of the Hydrogeological Investigation:

- <u>Background Review</u> A review of available information was conducted, including geological and hydrogeological mapping, aerial photography, topographic mapping and well records on file with the Ministry of the Environment Conservation and Parks (MECP) completed within a 500 m radius of the site.
- <u>Private Well Survey</u>- A private well survey was completed for properties located within a 500 m radius of the site. The well survey was completed to determine the location, construction details and operational history of private wells in the vicinity of the site. Water quality was completed for microbiological analysis, metals and general inorganics with results being compared to the Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWSOG) where permission was granted by the property owner.
- <u>Subsurface Investigation</u>- Seven test pits were completed across the site to evaluate shallow soil and groundwater conditions. Soil samples were collected for further laboratory analysis to assess percolation rates for shallow soils at the site.
- <u>Site Servicing Assessment</u> Based on the results of the private well survey and subsurface investigation, the feasibility of private servicing including potable groundwater supply wells and subsurface sewage disposal were evaluated given the proposed development plan.

3 Background

3.1 Official Plan Designation and Regulated Areas

The Site is located within the Niagara Peninsula Source Water Protection Area. The Site does not fall within a Wellhead Protection Area (WHPA) or Intake Protection Zone (IPZ). WHPAs and IPZs were not identified within a 500 m radius of the Site. Under the Township of West Lincoln Official Plan the following site designations are considered applicable:

- Schedule A (Municipal Structure The proposed development is located within a hamlet settlement area; remnant lands fall outside of the hamlet settlement area.
- Schedule B-3 (Land Use) The proposed development is located within a hamlet settlement area.
- Schedule C-1 and C-2 (Natural Heritage System) The proposed development is located within a hamlet settlement area and is not located within the proximity of a Provincially Significant Wetland, Greenbelt Natural Heritage System, Area of Natural or Scientific Interest, or Floodplain.
- Schedule C-5 (Aggregate and Petroleum Resources) The proposed development falls within an area of potential aggregate resources.
- Schedule D-3 (Hamlet Boundaries) The proposed development falls within the hamlet boundaries for Regional Road 12.

On review of the Ministry of the Environment Conservation and Parks (MECP) Source Protection Information Atlas the Site is not located within a Highly Vulnerable Aquifer (HVA) of Significant Groundwater Recharge Area (SGRA). The Site does not fall within a well head protection zone or within an issue contributing area. A tributary of the Twenty Mile Creek crosses the northern portion of the severed lands which falls within lands regulated by the Niagara Peninsula Conservation Authority (NPCA).

3.2 Site Description and Servicing

The site is identified under the legal description as Part of Lot 17, Concession 8, in the Township of West Lincoln, Ontario. The site is located immediately east of Grimsby Road, approximately 150 metres north of Highway 20 in West Lincoln, Ontario as indicated on the attached **Figure 1**. The site consists of an irregularly shaped parcel of land covering an area of approximately 4.23 hectares (10.45 acres). The site currently consists of an agricultural field surrounded by privately serviced rural residential dwellings and agricultural lands. Surrounding properties are privately serviced with individual wells or cisterns and subsurface sewage disposal systems.

It is currently proposed to develop a 3.15-hectare portion of the Site with 1.08-hectares remaining as remnant lands. The area proposed for development is to be developed with six detached residential lots, with a SWM block, and ROW. It is proposed to develop each residential lot with a four-bedroom, two-storey residence with a building envelope of approximately 185 m². It is anticipated that each lot will be developed with a four bedroom privately serviced residential dwelling. The proposed draft plan of subdivision is provided in **Appendix A**.

3.3 Topography and Surface Drainage

The site consists of relatively flat lands which gradually slopes to the south and southeast towards Twenty Mile Creek. Topographic mapping for the vicinity of the site indicates that the site lies at an elevation of approximately 195 m above sea level (masl). Topographic variations at the site are expected to be between 1 to 2 m in elevation.

Surface water runoff and shallow groundwater flow are anticipated to be in a south/southeast direction. The nearest identified surface water feature is Twenty Mile Creek located approximately 400 m south of the site. Twenty Mile Creek drains towards the east and north into Jordan Harbour and Lake Ontario located approximately 19 kilometres northeast of the site.

3.4 Local Geology and Hydrogeology

The site is located on the upper section of the Niagara Escarpment within the physiographic region identified as the Haldimand Clay Plain. Overburden at the subject site consists of glaciolacustrine deposits of silt and clay with minor sand. Thickness of overburden in the vicinity of the site is documented to be on the order of 6 to 12 m below ground level (mbgl). Bedrock underlying the site is comprised limestone, dolostone and shale of the Lockport Formation. This unit is made up of several subgroups, such as the Cataract and Clinton Groups, which are comprised of dolostone and shale.

Shallow groundwater is anticipated to follow topography and is expected to be directed to the east/southeast towards Twenty Mile Creek. Groundwater flows within bedrock are expected to the north towards the Niagara Escarpment located approximately 7 km north of the site. Groundwater is expected within the overburden several metres below existing grades.

Local stratigraphy and hydrogeology were further assessed through a review of the Ministry of the Environment Conservation and Parks online well record database. Well records within a 500 m radius of the Site were reviewed and locations are indicated on the attached **Figure 3**, with well record details provided in **Table 1**. A summary of well records is provided below:

Total Number of wells	42
Completed Within the overburden	2 (5%)
Bedrock Well	40 (95%)
Well Depth	
Less than 10.7 m below grade	7
10.7 - 13.7 m below grade	24
Greater than 13.7 m below grade	11
Average Well Depth	12.5 m
Well Use	
Domestic/Stock	27 (66%)
Commercial	2 (4%)
Monitoring/Test	2 (4%)
Agricultural	11 (26%)
Well Yield	
Less Than 18.9 L/min (<5 GPM)	1 (2%)
22.5 - 37.8 L/min (5 - 10 GPM)	15 (35%)
41.6 L/min - 76 L/min (11 - 20 GPM)	20 (49%)
Greater than 76 L/min (>20 GPM)	4 (10%)
No Data	2 (4%)

Summary of MECP Well Records

Wells within the study area are primarily completed within bedrock to depths less than 7.6 m to 27.4 m (25 to 90 feet) and are commonly used for domestic and agricultural purposes. Well yields are typically reported between 18.9 L/min (5 GPM) and 76 L/min (20 GPM), which is considered sufficient for domestic purposes. A summary of well records within the study area are provided in the attached **Table 1**. Well record locations are shown on the attached **Figure 2**.

3.5 Private Well Survey

A private well survey was completed for properties located within a 500 m radius of the Site. In total 47 properties were visited as part of the well survey. Of the properties surveyed, a response was received from 35 property owners, who participated in the well survey. It was identified that the most properties surrounding the site are serviced using cisterns which are regularly filled. Of the properties surveyed the following sources of potable water were noted:

Summary of Private Well Survey

Total Number of Residents Surveyed	Using Supply Well	Using Cistern with Trucked Water
Rural Residential	1	26
Rural Commercial	1	5
Agricultural/Livestock	2	0

One residence reported a groundwater supply well in operation. The well was reported to be used for residential purposes excluding potable supply. Potable water is brought purchased for residential use. One business reported using well water for lunchroom taps and bathrooms. Twenty-six households and five businesses purchase water to fill an on-site cistern. Two property owners utilize wells for farming purposes but maintain cisterns for household use. Of the 47 properties visited 12 did not respond to the survey. Three household residents indicated that a well was present on the property, but not in use due to poor quality. It is expected that wells listed under the MECP well record database that private wells have been decommissioned due to inadequate groundwater quality for residential supply.

A summary of the results of the well survey is provided in the attached **Table 2** and well survey locations are indicated on the attached **Figure 4**. A copy of the letter distributed to properties included within the private well survey and a blank well survey form are provided in the attached **Appendix C**.

3.6 Results of Subsurface Investigation

A subsurface investigation was completed at the site by Englobe on February 13, 2020. Seven test pits were completed across the site to depths of approximately 3.0 m below grade to investigate shallow soil and groundwater conditions. The excavation of test pits was carried out by a backhoe contractor and were supervised and logged by Englobe field staff. Representative soil samples were collected from open test pits for confirmation of soil type by the project engineer and for further laboratory testing consisting of laboratory grain size analysis. Test pit logs and the results of grain size analysis are provided in the attached **Appendix B**. Test pit locations are indicated on the attached **Figure 3**. The general soil conditions encountered in completed test pits are summarized in the sections below.

3.6.1 Topsoil

A layer of topsoil was encountered at the surface of the test pit. Topsoil thickness was observed between 150 mm up to 300 mm in some locations. It should be noted that topsoil thickness provided as part of the subsurface investigation should not be used to determine volumes of topsoil at the site for stripping and grading purposes.

3.6.2 Clayey Silt to Silty Clay

Soils underlying topsoil deposits consisted predominately of clayey silt to silty clay to the completed depths of test pits. Clayey silt to silty clay deposits were grey/brown in colouration with trace deposits of sand in areas. Deposits of clayey silt to silty clay were noted to become dense at depths of approximately 2.5 m below the existing ground surface.

Representative soil samples from shallow depths were obtained for laboratory testing for soil grain size analysis to assess percolation rates of the shallow native subgrade. The results of grain size analysis are summarized in the following table:

Sample ID	Sample Depth (mbgs)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Soil Classification
BH1 Sa 1	1.2	0	2	30	68	Silty Clay
BH3 Sa 1	0.7	0	4	30	66	Silty Clay
BH6 Sa1	0.7	0	1	31	68	Silty Clay

Based on the results of soil grain size analysis soil present at the site was classified under the unified soil classification system as O.L. (Organic silts, organic silty clays of low plasticity) with an estimated percolation rate from 20 to over 50 min/cm based on clay content as detailed in the Ministry of Municipal Affairs and Housing (MMAH) Supplementary Standard to the Ontario Building Code SB-6 (2012). Clay content within evaluated samples ranged from 66 to 68% of the total mass of the analyzed sample. Percolation rates were considered at a conservative rate of greater than 50 min/cm.

3.6.3 Groundwater Levels

The test pits were left open for a short duration following completion to document soil conditions. Test pits TP1 to TP3 and TP5 to TP7 were observed to have seeps and pooling groundwater at the bottom of the pit. Test pit TP4 was observed to be open and dry upon completion. Seepage was observed along the walls of the test pit at depths between 1.8 m and 2.5 m below grades.

3.7 Results of Groundwater Sampling

Water quality sampling was completed for private wells located at 7226 and 7378 Highway 20 on December 9, 2019. Water quality samples were obtained directly from a tap within each barn. Water quality sampling was completed for the private well located at 2942 Grimsby Road on December 23, 2019. Water quality samples were obtained directly from a tap outside a shed at the rear of the property. On all occasions, the tap was allowed to run for a period of five minutes to remove any standing water from the piping. Water samples were taken in laboratory supplied bottles appropriate for the completed analysis.

stored in a cooler on ice for transport to Agat Laboratories, a CALA-accredited third-party laboratory in Mississauga, Ontario for analysis.

It should be noted that water quality samples were obtained from a point bypassing any water quality treatment systems which may be in use for the residence. Water quality summarized below would be indicative of the raw water quality from the private water supply wells. The results of water quality analysis were compared to the Ontario Drinking Water Standards, Objectives and Guidelines (ODWSOG). Exceedances of the ODWSOG are summarized in the table below:

Parameter	Unit	OWDSOG		7226	7378	2942 Grimsby	
Parameter	Unit	MAC	AO/OG	Highway 20	Highway 20	Road	
Total Dissolved Solids	mg/L		500	3370	2020	1260	
Total Hardness	mg/L		80-100	2150	885	877	
Chloride	mg/L		250	-	811	-	
Sulphate	mg/L		500	1890		593	
Total Organic Carbon	mg/L		5.0	5.1	-	-	
Colour	TCU		5	189	-	368	
Turbidity	NTU		5	15.1	-	61.3	
Iron	mg/L		0.3	3.66	-	12.7	
Manganese	mg/L		0.05	0.215	0.133	0.252	
Total Coliforms	CFU/100 mL	0		NDOGT	NDOGT	ND	

Summary of Water Quality Exceedances

TCU - True Colour Units

NTU - Nephelometric Turbidity Units

CFU - Colony Forming Units

NDOGT - No Data; Overgrowth with Target

ND - Not Detected

ODWSOG MAC - Ontario Drinking Water Standards Maximum Acceptable Concentration

ODWSOG AO/OG - Ontario Drinking Water Standards Aesthetic Objective/Operational Guideline

The full results of the analyses are summarized in the attached **Table 3** and in the laboratory certificates of analysis provided in the attached **Appendix D**.

In general, groundwater quality in the area is poor with several exceedances of operational guidelines and aesthetic objectives. These exceedances impart objectionable taste, odour and colouration to groundwater supplies. Bacteria were also noted within collected samples. It is anticipated that bacterial presence is primarily due to well inactivity and poor maintenance. Bacterial contamination of groundwater at depth is not expected due to overlying low permeability soils.

Based on the water quality analysis and the results of the private well survey it is recommended to service the proposed residential lots using cisterns. It is expected that groundwater supply wells will yield poor quality with regards to aesthetic objectives and operational guidelines for domestic supply. Exceedances of the ODWSOG aesthetic objectives for hardness are not considered to be reasonably treatable.

4 Hydrogeological Assessment

4.1 Summary of Hydrogeological Conditions

The following summarizes the site conditions encountered as part of the completed site investigations:

- Seven test pits were completed at the site to assess soil and groundwater conditions. Soils at the site generally consisted of topsoil overlying clayey silt to silty clay. The test pits were completed to an approximate depth of 3.0 m below existing grades.
- Shallow groundwater is expected to follow topography and be directed to the south towards Twenty Mile Creek. Shallow groundwater levels are expected within several metres below existing grades.
- Six of the completed test pits were observed to have groundwater pooling at the base and seeps along the walls upon completion. Test pit four was observed to be dry and open upon completion. Seeping observed in the walls of the test pits was found at depths between 1.8 m and 2.5 m below grades.
- Laboratory grain size analyses were completed for representative soil samples obtained from three test pits. Percolation rates are expected at rates greater than 50 min/cm based on a review of the 2012 MMAH Supplementary Standard SB-6, as incorporated by the Ontario Building Code.
- A private well survey was completed for properties within a 500 m radius of the Site. It was found that most surrounding properties utilize cisterns for potable water supply. Private wells were not reported to provide potable supply.
- Water quality sampling was completed for private wells where permission was granted by the property owner. Results indicated non-detectable concentrations of nitrate and nitrite within private wells at 2942 Grimsby Road (50 m west of the site) and 7226 Highway 20 (located approximately 200 m south of the site). Nitrate concentrations of 6.2 mg/L were reported for the private well at 7378 Highway 20 located approximately 300 m southwest of the site. Septic impacts on underlying groundwater are not expected in the vicinity of the site.

Based on the water quality analysis and the results of the private well survey it is recommended to service the proposed residential lots using cisterns. It is expected that groundwater supply wells will yield poor quality with regards to aesthetic objectives and operational guidelines for domestic supply. Exceedances of the ODWSOG aesthetic objectives and operational guideline are not considered to be reasonably treatable.

4.2 Sewage Impact Assessment

The impact of proposed private subsurface sewage disposal beds was evaluated following the approach provided within the Ministry of the Environment Procedure D-5-4 (Technical Guideline for Individual On-Site

Sewage Systems: Water Quality Risk Assessment, August 1996). The risk assessment was based on soil and groundwater conditions observed within completed test pits and information obtained as part of the private well survey and MECP well record review.

Background nitrate concentrations in shallow ground water were evaluated as part of the completed private well sampling. The following table summarizes the measured concentration of nitrates in ground water surrounding the site:

Summary of Background Mitale Concentrations								
Private Well Location	Well Depth	Nitrate (mg/L)	Distance from Site					
7226 Highway 20	Unknown	<1.0	200 m south					
7378 Highway 20	Unknown	6.2	300 m southwest					
2942 Grimsby Road	14.5 m	<0.25	50 m west					

Summary of Background Nitrate Concentrations

Nitrate in ground water was noted for the well located at the municipal address of 7378 Highway 20 at a concentration of 6.2 mg/L. The private well in closest proximity to the site at 2942 Grimsby Road showed non-detectable levels of nitrate within ground water. Groundwater flow is expected to the south/southeast, with upgradient lands consisting of agricultural fields, situated outside of the hamlet settlement area. Significant background nitrate concentrations for the site are not expected.

4.2.1 Nitrate Impact Assessment

Soil conditions at the site consisted primarily of silty clay becoming dense to the completed depths of investigation at approximately 3.0 m below existing grades. Ground water seepage was noted at depths between 1.8 m and 2.5 m below existing grades. Potable water for surrounding private land uses is primarily supplied by cisterns filled with trucked water supplies. The proposed residential lots are recommended to be serviced using cisterns. Private supply wells, where installed, typically are completed within shale bedrock at depths greater than 7.6 m (25 feet). Wells are of low quality and are not used to provide potable water.

Hydrogeologically sensitive features including karstic areas, fractured of exposed bedrock exposed at surface, areas of thin soil cover and areas of highly permeable soils were not noted at the site and surrounding vicinity (i.e. within a 500 m radius of the site). The Site is not identified within a Significant Groundwater Recharge Area (SGRA) or Highly Vulnerable Aquifer (HVA). The most probable receiver for sewage effluent is considered the underlying bedrock aquifer with a vertical separation of approximately 10 m. Ground water discharge to surface water in the vicinity of the site is not expected due to the low permeability of soils present. It is expected that effluent plumes will be dispersed and of limited lateral extent within shallow soils to the south/southwest of the leaching bed areas.

Notwithstanding the above the following methodology was used to assess the potential increase in nitrates within shallow ground water at the downgradient property boundary for each of the six proposed residential lots, given the minimum proposed lot size of 0.40 hectares:

$(A \xrightarrow{Q \times N}{x \mid}) + Q$

Where: Q is the daily average flow sewage flow rate $(1,000 \text{ L/day} \text{ as per D-5-4 Section 5.6.2} (a) \text{ or } 365 \text{ m}^{3}/\text{yr})$

N is the nitrate loading for a conventional Class IV sewage system (40 mg/L)

A is the minimum lot area for proposed residential lots (4,000 m²)

I is the infiltration rate of underlying native silty clay soils (0.125 m/yr)

The maximum permissible concentration of nitrate in ground water at the down-gradient property boundary is considered at 10 mg/L corresponding to the health-related maximum acceptable concentration (MAC) guideline within the Ontario Drinking Water Standards. The resultant expected nitrate increase in shallow ground water is calculated at 16.9 mg/L for a conventional system. Given this outcome the pre-treatment of sewage will be required to meet acceptable concentrations of nitrate within shallow ground water at the down-gradient property boundary (i.e. tertiary treatment of effluent).

4.2.2 Tertiary treatment Requirements

Given the proposed lot sizes indicated on the draft pan of subdivision to meet a nitrate increase at the downgradient property boundary of 10 mg/L treatment of sewage effluent will be required. To meet groundwater quality targets with respect to nitrate it is expected that standard treatment systems capable of upwards of 50% nitrate removal (20 mg/L) would be required, which would result in an expected increase in nitrate at the downgradient property boundary of approximately 8.4 mg/L. It is anticipated that nitrate impacts would be within an acceptable level provided OBC approved tertiary treatment systems are used to pre-treat sewage effluent discharge to subsurface sewage disposal beds.

4.3 Preliminary Leaching Bed Design

Preliminary leaching bed design including the required minimum leaching bed area was evaluated based on the observed shallow soil and groundwater conditions at the site. The sewage design flows for the proposed residential dwellings were determined based on values listed within Table 8.2.1.3.A of the Ontario Building Code (OBC) for residential occupancies. The proposed dwellings are anticipated to consist of a fourbedroom residence (2,000 L/day peak daily flow rate) with floor area of approximately 370 m² (two-storey residence with 185 m² footprint) (additional 1,700 L/day flows given additional 100 L/day per 10 m² of additional floor space over 200 m², not exceeding 400 m²). Peak daily sewage flow rates for the purpose of septic system design are expected at 3,700 L/day.

Preliminary leaching bed design options were developed for the site based on the following technical considerations:

Native Soil	Clay and Silt
Unified Soil Classification	O.L.
Estimated Percolation Rate	Greater than 50 min/cm
Depth to Groundwater	Approximately 2.0 m below grade
Type of Sewage System	Fill based absorption trenches (Raised leaching bed)
Design Flow	3,700 L/day

Based on the above design considerations the following septic leaching bed sizing considerations are provided:

4.3.1 Fill Based Absorption Trenches

4.3.1.1 Bed Sizing

Where native soils consist of materials with percolation rates of 50 min/cm or greater, a raised leaching bed is recommended. The leaching bed would be constructed overlying engineered fill (sand) not less than 250 mm in thickness, extending 15 m in the downgradient direction (expected south of the site towards Twenty Mile Creek). The absorption trenches are to be not less than 900 mm above soil with a percolation time more than 50 minutes. It is expected that the leaching bed would be required to be raised a minimum of 900 mm above existing grades.

Where a conventional Class IV leaching bed with treatment system is constructed, the total length of distribution pipe required is determined as follows:

L = QT/300

Where; L is total length of distribution pipe in metres; Q is the total daily design sanitary sewage flow (3,700 L/day); and, T is the design percolation time (50 min/cm).

The total length of distribution pipes required for a Class IV leaching bed with treatment unit given the observed shallow soil conditions at the site is expected at approximately 620 m. Distribution pipe length is not to exceed 30 m in length and spaced a minimum distance of 1.6 m between runs. Given the total length of leaching required for the anticipated design sewage flow rates, the leaching bed is expected to consist of 21 runs of tile 30 m in length covering a total area of approximately 960 m² (30 m by 32 m).

The fill area is to be sloped a maximum of four horizontal units for each vertical unit for an additional 3.6 m on each side. A sand mantle would be required to extend a minimum of 15 m down-gradient of the leaching bed (south) for a fill-based area covering 2,046 m² (30 m + 15 m + 7.2 m by 32 m + 7.2 m)

4.3.1.2 Loading Rates

Fill based absorption trenches are to be designed such that the loading rates for soils with percolation rates greater than 50 min/cm do not exceed 4 L per m² per day (as per Table 8.7.4.1.A of the OBC). Given the expected daily sewage flow rate of 3,700 L/day and the leaching bed area of 960 m², loading rates for proposed leaching beds are expected at 3.9 L/m²/day. Loading rates are expected to be acceptable and sewage breakouts are not expected provided the sand mantel is extended in the down-gradient direction as specified in Section 8.7.4.2 Subsection (1b) of the OBC.

It should be noted that the above estimated percolation rates used for the preliminary design of the septic leaching bed were based on sieve and hydrometer testing completed for shallow soils at the site at test pit locations TP1, TP3 and TP6. The requirement for fill-based absorption trenches should be confirmed at each lot prior to construction. The above design is considered as a worst case and represents the expected maximum area required for the considered sewage flows.

4.3.2 Filter Bed

Filter beds are considered a viable option for use for sewage disposal for each proposed residential lot given a sewage flow rate of 3,700 L/day. The base of the filter bed shall extend to a thickness of at least 250 mm over an area meeting the following requirements:

A=QT/850

Where: A is the area of contact between the base of the filter media and native soil;Q is the total daily design sanitary sewage flows (3,700 L/day); and,T is the lesser of 50 and the percolation rate of the underlying soil (50 min/cm).

The resulting filter bed area was calculated at 220 m². The effective area of the surface of the filter medium in each filter bed shall not be more than 50 m² with a loading rate not exceeding 100 L/m² per day where a treatment unit meeting OBC requirements is utilized. Given these requirements the filter bed for each lot would be divided into five separate 44 m² adjacent beds.

The filter medium shall consist of clean sand to a minimum depth of 750 mm, with the stone layer not less than 900 mm above a soil with a percolation time more than 50 minutes. It is expected that the filter bed would be raised a minimum of 900 mm above existing grades. The expected base area for fill is expected to cover an area of approximately 560 m², given five area beds with 6.6 m by 6.6 m dimensions with fill sloped 1H:4V extending 7.2 m from filter beds.

4.3.3 Shallow Buried Trench

Consideration has been provided for the requirements necessary for a sewage disposal system consisting of a shallow buried trench. Given that percolations rates are expected greater than 50 min/cm the length of a shallow buried trench would be required at a minimum length of 100 m. In-situ testing would be required at the location of a shallow buried trench to confirm percolation times for native soils do not exceed 125 minutes. It is expected that shallow buried trenches would consist of four runs or 25 m length distribution pipe with minimum 2 m spacing between runs.

Given the low permeability soils present it is recommended to construct a system comprising of shallow buried trenches on a filter bed consisting of clean sand. The coverage area for the clean sand should follow that of a filter bed discussed in Section 4.3.2 above. The contact area for the filter bed should cover a minimum area of 220 m² with an even distribution of distribution pipe over this area for adequate loading. It is expected that the shallow buried trenches would be raised a minimum of 250 mm above existing grades.

4.3.4 Design Considerations

The raised area bed for the proposed residential dwelling should be constructed in accordance with the OBC guidelines as follows:

- The distribution piping is to be uniform in length and evenly spaced within the surface of the filter medium (sand layer) to which the effluent is applied.
- All leaching bed fill added shall be stabilized against erosion
- The sides of the added leaching bed fill shall be sloped to ensure stability but shall not be steeper than one unit vertical for every four units horizontally.

The septic tanks for each proposed residential dwelling should be constructed in accordance with the OBC guidelines as follows:

- Septic tank shall be greater of the minimum capacity of 3,600 L or two times the daily design flow for residential occupancies. For the proposed dwellings, the minimum septic tank volume is considered at 7,400 L.
- The septic tank should be completed such that there is a minimum of two compartments. The first compartment should consist of a minimum volume of 1.3 times the daily sanitary sewage flow at a minimum volume of 4,810 L with the second compartment at a volume of 2,590 L (minimum 50% volume of the first compartment).

It is anticipated that setback requirements for the sewage disposal system can be met. Setback requirements for the septic tank and distribution pipe are further discussed in Section 4.4 below.

4.4 Leaching Bed Setback Requirements

It should be noted that for raised leaching beds setback limits are to be increased by twice the height that the leaching bed is raised above the original grade (i.e. raising the leaching bed by 600 mm in thickness will increase setbacks by 1.2 m).

The following setbacks must be observed when siting septic leaching fields and tanks:

- Septic tank not closer than:
 - 1.5 m to any structure;
 - o 3.0 m to the property line;
 - 15 m to surface water body or well.
- Distribution pipe not closer than:
 - o 5 m to any structure;
 - o 3 m to the property line;
 - 5 m between distribution pipes of leaching beds;
 - 15 m to surface water body or a well with a watertight casing to a depth of at least 6 m;
 - 30 m to any other well.

For the purposes of leaching bed design, it was assumed that cisterns are to be installed at the six severed properties. A well survey completed within 500 m of the site indicated that most surrounding residences utilize a cistern for household and business purposes. It is anticipated that private wells surrounding the site fall outside of the required setback limits defined above.

Given the sizing requirements for septic systems discussed in Section 4.3 above and the setback limits required for fill-based systems the following table provides a summary of the expected minimum tile bed envelope required per lot for sewage disposal systems:

Summary of Required Septic Envelope

System Type	Bed Area	Mantle Required	Height Raised	Area Requirement	Additional Setback Requirement
Fill Based Absorption Trenches	960 m ²	Yes (15 m)	900 mm	2,085 m ²	1.8 m
Filter Bed	220 m ²	No	900 mm	876 m ²	1.8 m
Shallow Buried Trenches	150 m ²	No	250 mm	220 m ²	0.5 m

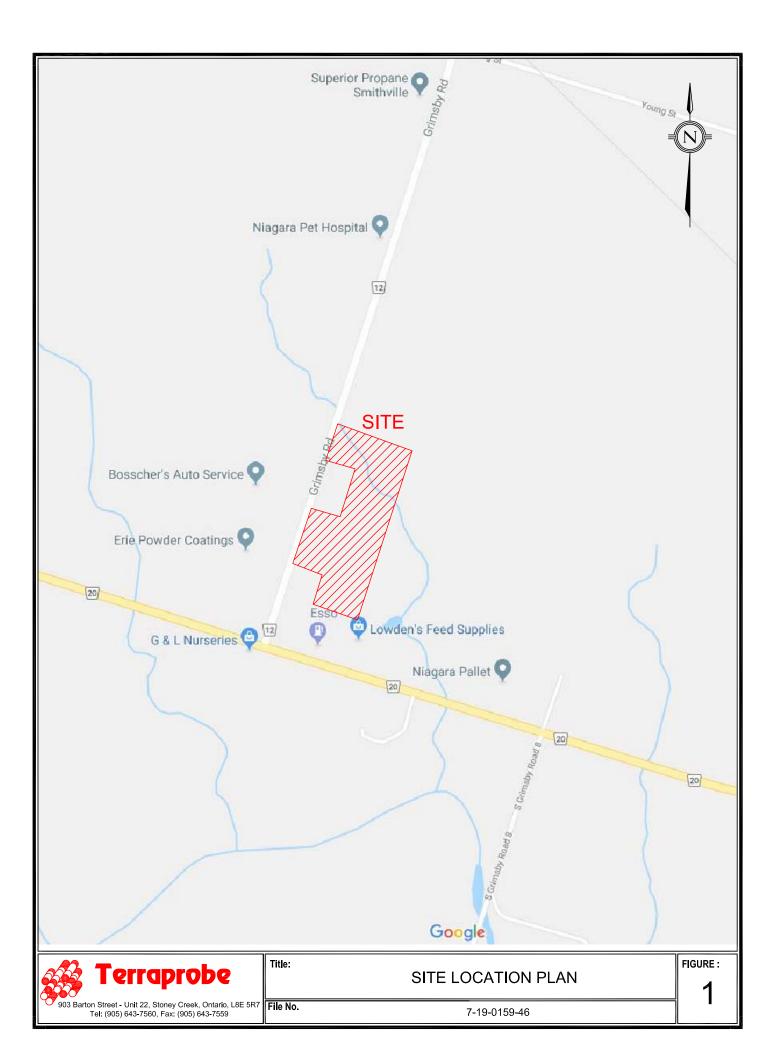
Given proposed residential lot sizes are proposed between 4,000 m² and 5,600 m² it is anticipated that lot sizes will be sufficient to allow for private servicing provided cisterns are utilized for potable water supply. It should be noted that the above design is based on sewage flows from a four-bedroom residence with floor area of 370 m², assuming a maximum of 20 fixture units. Lot layout should be reviewed once residence size and layout has been finalized given the above preliminary tile bed design.

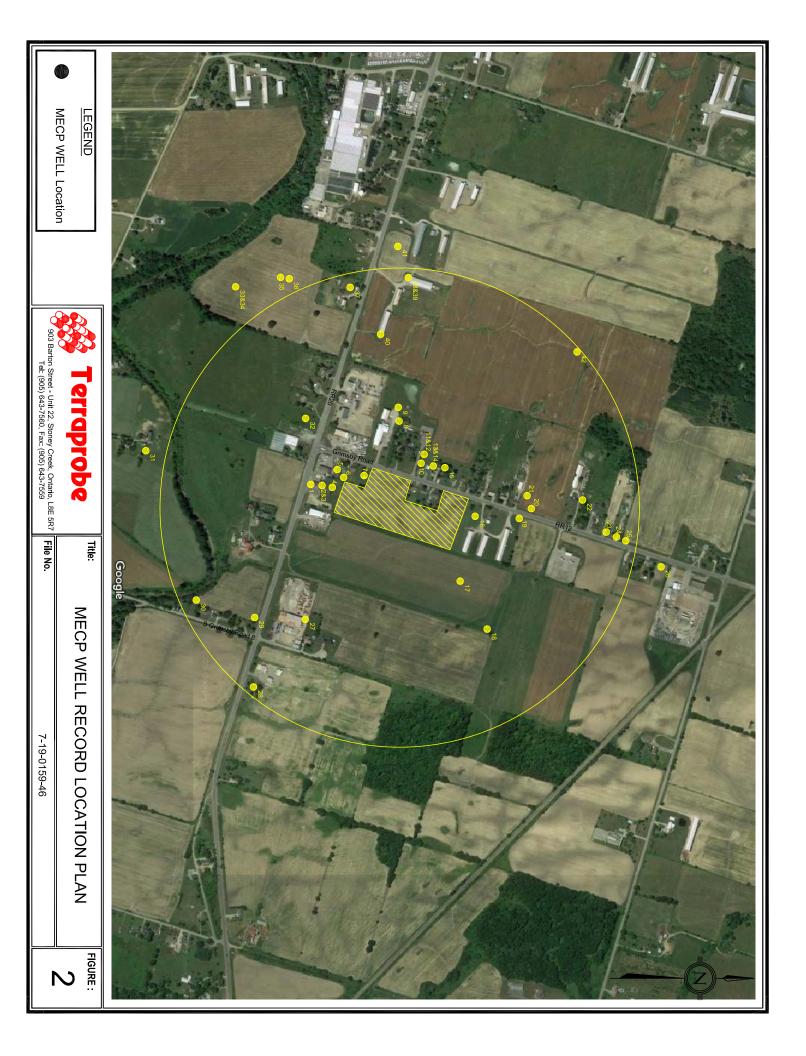
It is expected that if there is a requirement for sufficient reserve area for replacement of the sewage disposal bed that an option utilizing a smaller area requirement such as an area bed or shallow buried trenches will be required for proposed residential lots, or that the fill-based absorption trenches would be replaced in place of the failed system.

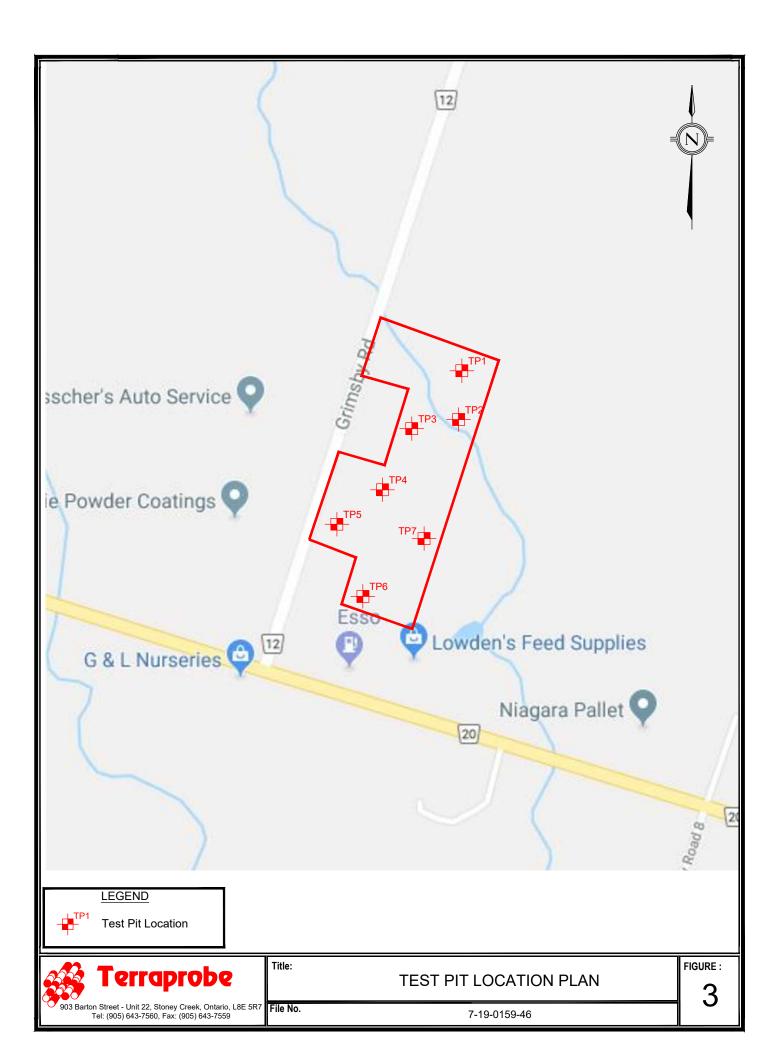
5 Conclusions and Recommendations

The following summarizes the results of field investigations for the site completed as part of this hydrogeological investigation:

- 1. The site comprises a total site area of approximately 4.23 hectares (10.45 acres). It is proposed to develop a 3.15-hectare parcel of the subject lands for a residential subdivision consisting of six detached residential lots between 0.40 ha to 0.56 ha in area, with remaining 1.08-hectares consisting of remnant lands.
- 2. Seven shallow test pits were completed at the site to assess shallow soil and groundwater conditions. Soils at the site were observed to consist of topsoil overlying clayey silt to silty clay. All test pits were completed to approximately 3.0 m below existing grades.
- Shallow groundwater is expected to follow topography and be directed to the south towards Twenty Mile Creek. Shallow groundwater levels are expected within several metres below existing grades.
- 4. Six of the completed test pits were observed to have groundwater seepage and groundwater pooling upon completion. Test pit four was observed to be dry and open upon completion. Seepage was observed at depths between 1.8 m and 2.5 m below grades.
- 5. Laboratory grain size analyses were completed for representative soil samples obtained from three test pits with soils classified as silty clay. Percolation rates are expected at rates greater than 50 min/cm based on a review of the 2012 MMAH Supplementary Standard SB-6, as incorporated by the Ontario Building Code.
- 6. A private well survey was completed for properties within a 500 m radius of the site. It was found that most wells in the vicinity of the site are no longer in use with potable water supply using cisterns with purchased water. Of the private groundwater supply wells identified groundwater was not reported to be used for potable supply.
- 7. Water quality sampling was completed for private wells where permission was granted by the property owner. Results indicated non-detectable concentrations of nitrate and nitrite within private wells at 2942 Grimsby Road (50 m west of the site) and 7226 Highway 20 (located approximately 200 m south of the site). Nitrate concentrations of 6.2 mg/L were reported for the private well at 7378 Highway 20 located approximately 300 m southwest of the site. Septic impacts on underlying groundwater are not expected in the vicinity of the site.
- Aesthetic objectives and operational guidelines exceedances were noted for total dissolved solids, hardness, chloride, turbidity, colour, total organic carbon, total iron, and total manganese. Based on the water quality analysis and the results of the private well survey it is recommended to service the proposed residential lots using cisterns.


Based on the above investigation the following summarizes the conclusions and recommendations of this investigation:


- Nitrate impact assessment for a conventional Class IV sewage system was calculated at 16.9 mg/L at the down-gradient property boundary, given a lot covering an area of 4,000 m². Given the proposed density of residential lots, the use of tertiary treatment systems capable of a 50% reduction of nitrate will be required.
- Sewage flows for the proposed development were determined based on daily design sewage flows for proposed uses found within the Ontario Building Code. It was assumed that residential dwellings will consist of four bedrooms, with floor area of 370 m², and 20 fixture units, with peak sewage design flows of 3,700 L/day.
- 3. It is anticipated that a fill-based absorption trench system with treatment will consist of a minimum distribution pipe length of 620 m. It is anticipated that the leaching bed would consist of 21 runs of 30 m pipe for a leaching bed area of approximately 960 m² (30 m by 32 m with setback requirements) and incorporate a 15 m mantle extending down-gradient to the bed. The fill-based absorption trench system would be raised a minimum of 900 mm above native soils with a percolation time greater than 50 minutes.
- 4. A filter bed would require a basal area of 220 m² divided into five separate 44 m² adjacent beds. The filter medium shall consist of clean sand to a minimum depth of 750 mm, with the stone layer not less than 900 mm above a soil with a percolation time more than 50 minutes. It is expected that the filter bed would be raised a minimum of 900 mm above existing grades.
- 5. The length of a shallow buried trench would be required at a minimum length of 100 m. In-situ testing would be required at the location of a shallow buried trench to confirm percolation times for native soils do not exceed 125 minutes. It is expected that shallow buried trenches would consist of four runs or 25 m length distribution pipe with minimum 2 m spacing between runs. Given the low permeability soils present it is recommended to construct a system comprising of shallow buried trenches on a filter bed consisting of clean sand with a basal area of 220 m² with an even distribution of distribution pipe over this area for adequate loading. It is expected that the shallow buried trenches would be raised a minimum of 250 mm above existing grades.
- 6. The septic tank volume would be required at twice the daily design flow at a capacity of 7,400 L. The septic tank is recommended to consist of two compartments with the first compartment at 1.3 times the daily design flow at a volume of 4,810 L with the second compartment at a volume of 2,590 L.
- 7. Based on the expected sewage flow rates the area required for a subsurface disposal bed is expected between 2,085 m² to 220 m². Given proposed residential lot sizes are proposed between 4,000 m² and 5,600 m² (1.0 to 1.4 acres) it is anticipated that lot sizes will be sufficient to allow for private servicing provided cisterns are utilized for potable water supply.
- 8. It is expected that if there is a requirement for sufficient reserve area for replacement of the sewage disposal bed that an option utilizing a smaller area requirement such as an area bed or shallow buried trenches will be required for proposed residential lots, or that the fill-based absorption trenches would be replaced in place of the failed system.


Figures

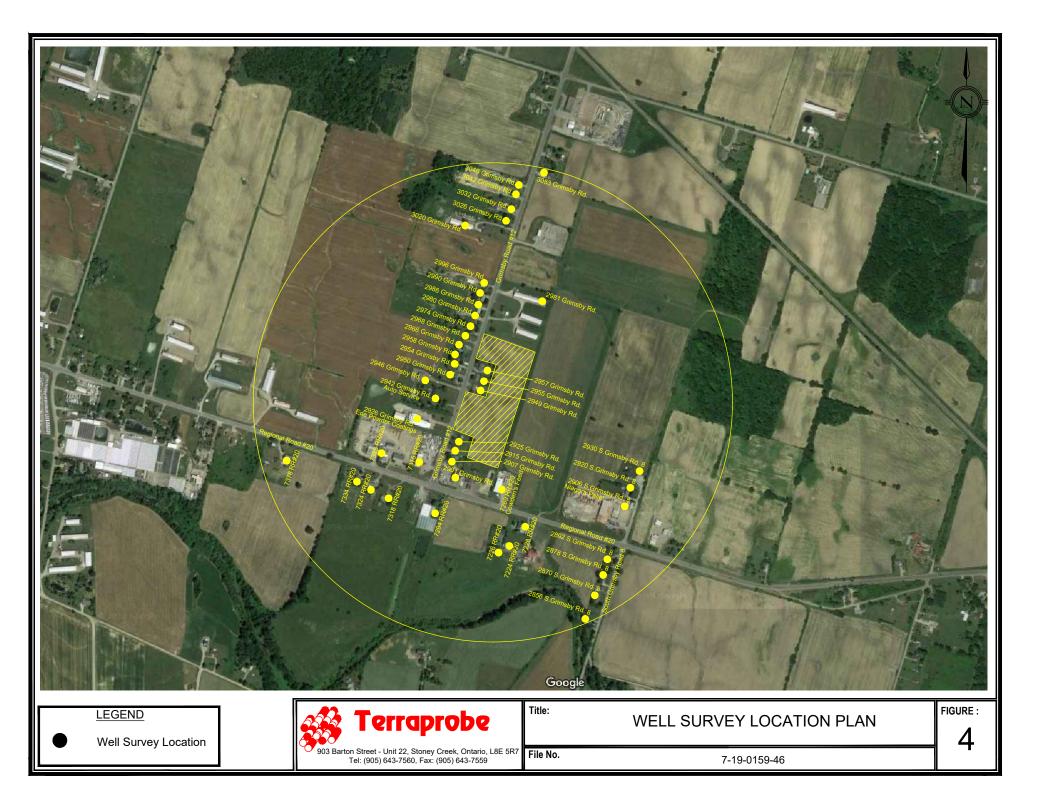


TABLE 1: SUMMARY OF MECP WELL RECORDS PROPOSED RESIDENTIAL SEVERANCE GRIMSBY ROAD WEST LINCOLN, ONTARIO

Map ID	Well ID	Easting	Northing	Year	Water (ft bgl)	Pumping (US GPM)	Туре	Stratigraphy (Depth in Feet)
1	7243103	614909	4774976	2015			Monitoring	Black fill (0-2) Brown clay (2-13) Grey clay (13-24)
2	3801593	614902	4775001	1954	26	28	Commercial	Clay (0-22) Shale (22-24) Escarpment rock (24-33) Gravel and mud seems (33-34) Bedrock (34-42)
3	3801596	614916	4775007	1959	22	16	Domestic	Clay (0-24) Shale (24-26)Bedrock (26- 42)
4	3802512	614916	4775021	1975	25	10	Domestic	Brown clay (0-16) Grey clay (16-35) Grey shale with gravel (35-38) Grey limestone (38-52)
5	3801562	614861	4775068	1952	20	36	Agricultural	Clay with boulders (0-38) Bedrock (38- 46)
6	3801597	614875	4775075	1959	10	28	Domestic	Clay (0-27) Limestone (27-35)
7	3801598	614874	4775142	1960	22	10	Domestic	Clay (0-23) Limestone (23-42)
8	3803633	614736	4775228	1993	12	7	Domestic	Brown Clay (0-15) Brown stones with clay (15-19) Brown limestone (19-48)
9	3803636	614726	4775227	1993	12	7	Domestic	Brown Clay (0-15) Brown stones with clay (15-19) Brown limestone (19-48)
10	3801611	614857	4775277	1958	18	5	Domestic	Clay (0-19) bedrock (19-48)
11	3801609	614857	4775284	1957	14	20	Domestic	Blue clay (0-21) Gravel (21-22)Bedrock (22-37)
12	3801610	614857	4775284	1957	14	20	Domestic	Blue clay (0-21) Gravel (21-22) Grey Bedrock (22-39)

TABLE 1: SUMMARY OF MECP WELL RECORDS PROPOSED RESIDENTIAL SEVERANCE GRIMSBY ROAD WEST LINCOLN, ONTARIO

Map ID	Well ID	Easting	Northing	Year	Water (ft bgl)	Pumping (US GPM)	Туре	Stratigraphy (Depth in Feet)
13	3801605	614862	4775319	1954	8	18	Domestic	Clay (0-18) Shale (18-20) Bedrock (20- 29)
14	3801606	614862	4775319	1955	16	18	Domestic	Clay (0-22) Shale (22-23) Bedrock (23- 25)
15	3801613	614871	4775339	1958	28	7	Domestic	Clay (0-20) Bedrock (20-42)
16	3801595	615000	4775436	1959	24	10	Domestic	Clay (0-21) Bedrock
17	3803277	615178	4775404	1988	17	15	Domestic	Grey limestone (34-41)
18	3803929	615316	4775471	2000	16	5	Commercial	Brown clay (0-20) Brown escarpment rock (20-27) Brown limestone (27-39)
19	3801600	614997	4775564	1966	20	10	Agricultural	Blue clay (0-26) Limestone (26-40)
20	3801601	614972	4775590	1952	4	24	Domestic	Clay (0-16) Bedrock (16-34)
21	3801612	614922	4775589	1958	16	16	Domestic	Clay (0-19) Bedrock (19-35)
22	3801614	614941	4775740	1963	20	0.5	Domestic	Blue clay (0-18) Grey Limestone (18- 35)
23	3801604	615042	4775821	1953	16	16	Domestic	Clay with boulders (0-18) Bedrock (18- 38)
24	3801603	615056	4775856	1953	14	13	Domestic	Clay with boulders (0-16) Bedrock (16- 37)
25	3801602	615061	4775877	1953	15	8	Domestic	Clay with boulders (0-17) Dolomite (17- 36)
26	3801594	615113	4775959	1956	14	16	Domestic	Clay (0-16) Shale (16-22) Bedrock (22- 44)
27	7177018	615300	4774972	2012			Test	Grey gravel (0-2) Brown silt with clay (2-6) Brown clay (6-16) Grey and red clay (16-20)
28	3801592	615502	4774816	1960	16	15	Domestic	Clay (0-40) Shale (40-42)
29	3801680	615293	4774820	1954	18	11	Domestic	Clay (0-33) Bedrock (33-38)

TABLE 1: SUMMARY OF MECP WELL RECORDS PROPOSED RESIDENTIAL SEVERANCE GRIMSBY ROAD WEST LINCOLN, ONTARIO

Map ID	Well ID	Easting	Northing	Year	Water (ft bgl)	Pumping (US GPM)	Туре	Stratigraphy (Depth in Feet)
30	3801790	615238	4774658	1968	14	10	Domestic	Brown clay (0-15) Blue clay (15-30) Grey limestone (30-40)
31	3803063	614815	4774478	1984	20	14	Agricultural	Brown clay (0-25) Brown clay with gravel (25-30) Brown limestone (30- 38)
32	3801681	614712	4774960	1953	6	7	Commercial	Clay (0-12) Gravel with boulders (12- 16) Bedrock (16-34)
33	3803260	614299	4774826	1988	20	16	Agricultural	Brown clay (0-9) Grey limestone (9-60)
34	3803261	614299	4774826	1988	20	15	Domestic	Grey limestone (28-45)
35	3801685	614281	4774957	1966	16	18	Industrial	Grey clay (0-13) Grey shale (13-18) Bedrock (18-90)
36	3801684	614280	4774979	1956	14	13	Domestic	Clay (0-14) Shale (14-16) Bedrock (16- 37)
37	3801683	614313	4775098	1952	20	10	Domestic	Clay (0-14) Bedrock(14-30)
38	7143354	614328	4775239	2010	19	6	Agricultural	Brown clay (0-13) Brown clay with stones (13-18) Brown limestone (18- 23) Brown limestone (24-50)
39	7175942	614328	4775239	2010	19	6	Agricultural	Brown clay (0-13) Brown clay with stones (13-18) Brown limestone (18- 23) Brown limestone (24-50)
40	3803102	614473	4775165	1985	23	16	Agricultural	Brown clay (0-12) Brown shale (12-16) Brown limestone (16-48)
41	3801616	614222	4775220	1951	10	16	Agricultural	Brown clay (0-14) Grey shale (14-18) Grey limestone (18-44)
42	3803838	614498	4775702	1988	12	20	Agricultural	Brown clay (0-1) Grey clay (1-18) Grey clay (with boulders (18-252) Bedrock (22-60)

ADDRESS	NAME	WELL TYPE	WATER LEVEL (mbgl)	WELL DEPTH (mbgl)	TREATMENT SYSTEMS	WELL USE	WELL DEMAND	COMMENTS
Grimsby Road (Highway 12)								
2901 Grimsby Road	Napa Auto Parts	Cistern						Business fills cistern for water supply.
2907 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply
2915 Grimsby Road	Unknown							No response, letter was left in mailbox.
2925 Grimsby Road	Unknown	Cistern						Property had a well several years ago. Property owner had the well decomissioned and a cistern installed.
2926 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply
2942 Grimsby Road	Fred & Joyce Bosschers	Drilled	Unknown	14.5	None	Agricultural	None	Household fills cistern for water supply. Well is used for landscaping - well used to irrigation of 6 acres of cropland from 2005-2009
2946 Grimsby Road	Unknown	Cistern						Business fills cistern for water supply.
2949 Grimsby Road	Unknown	Cistern						Household reported to fill a cistern for water supply according to neighbour. No response, letter was left in mailbox.
2950 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply
2954 Grimsby Road	Unknown							No response, letter was left in mailbox.
2955 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply

ADDRESS	NAME	WELL TYPE	WATER LEVEL (mbgl)	WELL DEPTH (mbgl)	TREATMENT SYSTEMS	WELL USE	WELL DEMAND	COMMENTS
2957 Grimsby Road	Unknown	Cistern						Household reported to fill a cistern for water supply according to neighbour. No response, letter was left in mailbox.
2958 Grimsby Road	Unknown							No response, letter was left in mailbox.
2966 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply
2968 Grimsby Road	Unknown							No response, letter was left in mailbox.
2974 Grimsby Road	Unknown							No response, letter was left in mailbox.
2980 Grimsby Road	Unknown							No response, letter was left in mailbox.
2981 Grimsby Road	Unknown							No response, letter was left in mailbox.
2986 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply.
2990 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply. One well, buried at the front of the property. Not accessable. Currently not used.
2996 Grimsby Road	Unknown							No response, letter was left in mailbox.
3024 Grimsby Road	Unknown							No response, letter was left in mailbox.
3026 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply.
3032 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply.

ADDRESS	NAME	WELL TYPE	WATER LEVEL (mbgl)	WELL DEPTH (mbgl)	TREATMENT SYSTEMS	WELL USE	WELL DEMAND	COMMENTS
3042 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply. Three wells on property. One at side of the house has been filled in. One near garage is a dug well; is caving in and collects rainwater. One in field at back of house; drilled to approximately 200 feet, but not currently in use.
3046 Grimsby Road	Unknown							No response, letter was left in mailbox.
3053 Grimsby Road	Unknown	Cistern						Household fills cistern for water supply.
Highway 20								
7224 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
7226 Highway 20	Gary Davis	Drilled	Unknown	Unknown	None	Agricultural	11 cattle & a few chickens	Household fills cistern for water supply. Well water is used for farming purposes only. Good quantity of water. Poor quality of water. Heavy iron staining, hardness and sulphur.
7228 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
7269 Highway 20	Lowden's Feed Supply	Cistern						Household fills cistern for water supply.
7283 Highway 20	Esso Gas Station & Chesters Chicken	Cistern						Household fills cistern for water supply.
7294 Highway 20	G&L Nursuries	Cistern						Household fills cistern for water supply.
7315 Highway 20	A. Van Egmond	Cistern						Business fills cistern for water supply.
7318 Highway 20	Unknown							No response, letter was left in mailbox.

ADDRESS	NAME	WELL TYPE	WATER LEVEL (mbgl)	WELL DEPTH (mbgl)	TREATMENT SYSTEMS	WELL USE	WELL DEMAND	COMMENTS
7324 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
7325 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
7334 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
7378 Highway 20	Julia & Martin Nurmi	Drilled	Unknown	Unknown	Softener for household	Household and farm	3 people 2 horses	Household use for everything except drinkning. Residents fill water containers for drinking within the city.
7423 Highway 20	Unknown	Cistern						Household fills cistern for water supply.
South Grimsby Road 8								
2856 S. Grimsby Road 8	Unknown	Cistern						Household fills cistern for water supply.
2870 S. Grimsby Road 8	Unknown							No response, letter was left in mailbox.
2878 S. Grimsby Road 8	Unknown	Cistern						Household fills cistern for water supply.
2892 S. Garimsby Road 8	Unknown	Cistern						Household fills cistern for water supply.
2906 S. Grimsby Road 8 (Niagara Pallet)	Fred Vrugteveen	Drilled	Unknown	Unknown	Filtration for iron and sulphur	Bathroom sink and toilets	Unknown	Well use for bathroom sink and toilet. Was unable to take water level or chemistry because well has an older cap with rusted bolts. Filtration system is hooked up directly to intake line.
2920 S. Grimsby Road 8	Unknown							No response, letter was left in mailbox.
2930 S. Grimsby Road 8	Unknown							No response, letter was left in mailbox.

TABLE 3: SUMMARY OF WATER QUALITY ANALYSIS RESIDENTIAL SEVERANCE GRIMSBY ROAD WEST LINCOLN, ONTARIO

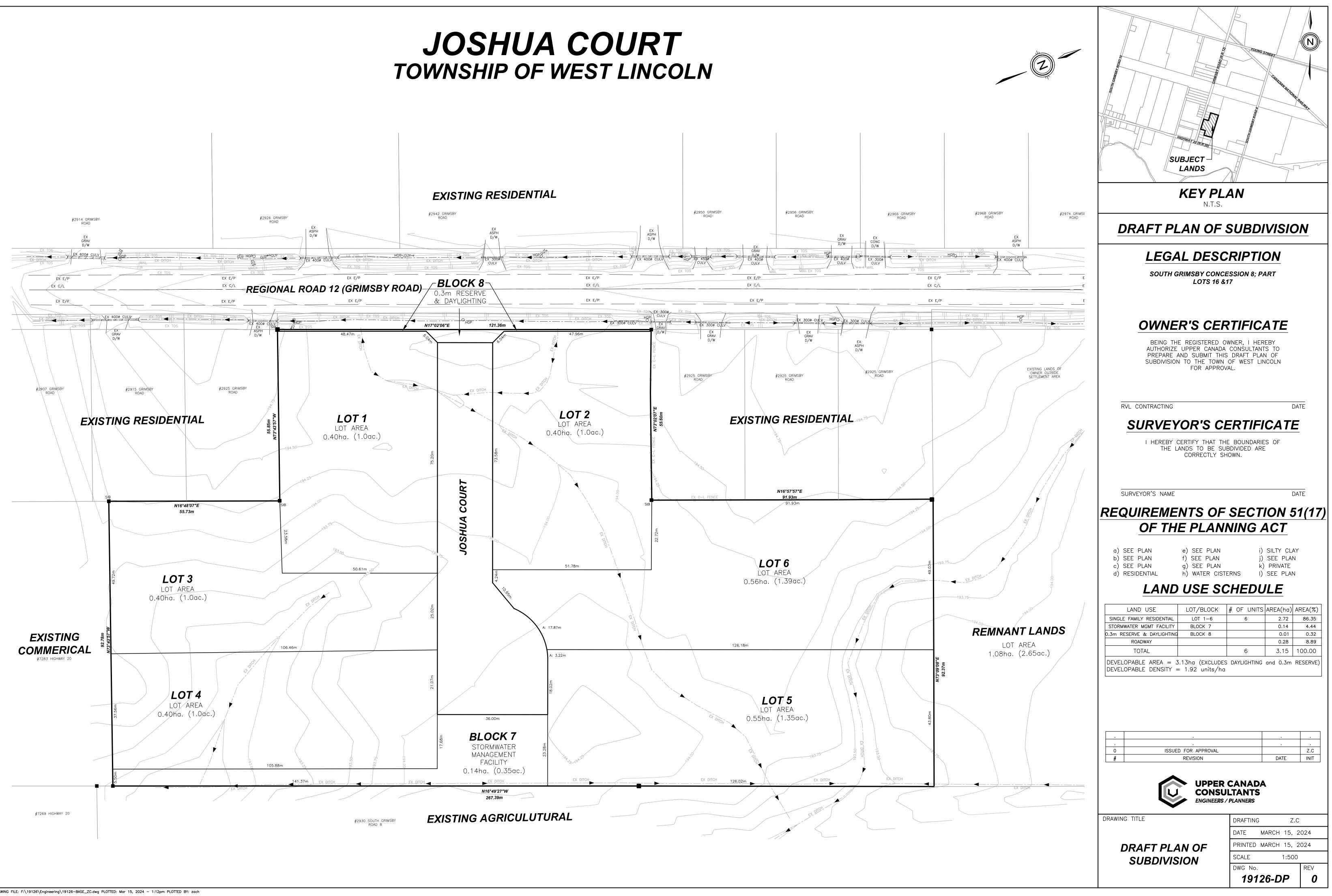
		ODWSOG	ODWS			
	Unit	MAC	AO/OG	7226 HWY 20	7378 HWY 20	2942 Grimsby Rd
09-Dec-19						
23-Dec-19						
GENERAL PARAMETERS	0/			00.40	0140	1 100
Electrical Conductivity	uS/cm			3340	3140	1430
pH Tatal Disastrust Calida	pH Units		6.5 - 8.5	7.60	7.64	7.51
Total Dissolved Solids	mg/L		500	3370 2150	2020 885	1260 877
Total Hardness (as CaCO3) Alkalinity (as CaCO3)	mg/L mg/L		80 - 100 30 - 500	441	273	468
Fluoride	mg/L	1.5	30 - 500	<0.1	<1.0	<0.25
Chloride	mg/L	1.5	250	47.2	<1.0 811	25.40
Bromide	mg/L		230	<1.0	<1.0	<0.25
Nitrate as N	mg/L	10.0		<1.0	6.2	<0.25
Nitrite as N	mg/L	1.0		<1.0	<1.0	<0.25
Sulphate	mg/L	1.0	500	1890	105.0	593
Ortho phosphate as P	mg/L		000	<2.0	<2.0	< 0.50
Total Phosphorus	mg/L			0.21	0.04	0.09
Ammonia as N	mg/L			0.17	<0.02	0.31
Total Organic Carbon	mg/L		5	5.1	2.0	4.2
Reactive Silica	mg/L			15.3	11.4	14.2
Colour	TCU		5	189	<5	368
Turbidity	NTU		5	15.1	0.7	61.3
Calcium	mg/L			234.0	194.0	165.0
Magnesium	mg/L			381.0	97.3	113.0
Sodium	mg/L		200	98.7	194.00	58.50
Potassium	mg/L			6.60	3.97	2.53
METALS						
Aluminum	mg/L		0.1	0.011	0.007	0.012
Antimony	mg/L	0.006		<0.003	<0.003	<0.003
Arsenic	mg/L	0.01		<0.003	<0.003	0.01
Barium	mg/L	1		0.032	0.200	0.160
Beryllium	mg/L			<0.001	<0.001	<0.001
Boron	mg/L	5		0.066	0.044	0.019
Cadmium	mg/L	0.005		<0.001	0.002	<0.001
Chromium	mg/L	0.05		< 0.003	< 0.003	< 0.003
Cobalt	mg/L			<0.001	< 0.001	<0.001
Copper	mg/L		1	<0.003	0.004	< 0.003
Iron	mg/L		0.3	3.7	0.1	12.7
Lead	mg/L	0.01	0.05	0.001	0.002	0.005
Manganese	mg/L	0.004	0.05	0.22	0.13	0.25
Mercury	mg/L	0.001		< 0.0001	< 0.0001	< 0.0001
Molybdenum	mg/L			< 0.002	< 0.002	0.002
Nickel	mg/L	0.05		<0.003 <0.004	<0.003 <0.004	<0.003 <0.004
Selenium Silver	mg/L mg/L	0.05		<0.004	<0.004	<0.004
				1.860	0.815	0.461
Strontium Thallium	mg/L mg/L			< 0.006	<0.006	<0.006
Titanium	mg/L			0.023	0.008	0.006
Tungsten	mg/L			<0.023	<0.002	<0.000
Uranium	mg/L	0.02		0.004	0.002	0.003
Vanadium	mg/L	0.02		<0.002	<0.002	< 0.003
Zinc	mg/L		5	0.051	0.585	0.177
Zirconium	mg/L			< 0.004	< 0.004	< 0.004
MICROBIOLOGICAL ANALYSIS						
Escherichia coli	CFU/100mL	0		NDOGT	NDOGT	ND

ODWS MAC - Ontario Drinking Water Standards and Operation Guidelines Maximum Acceptable Concentration

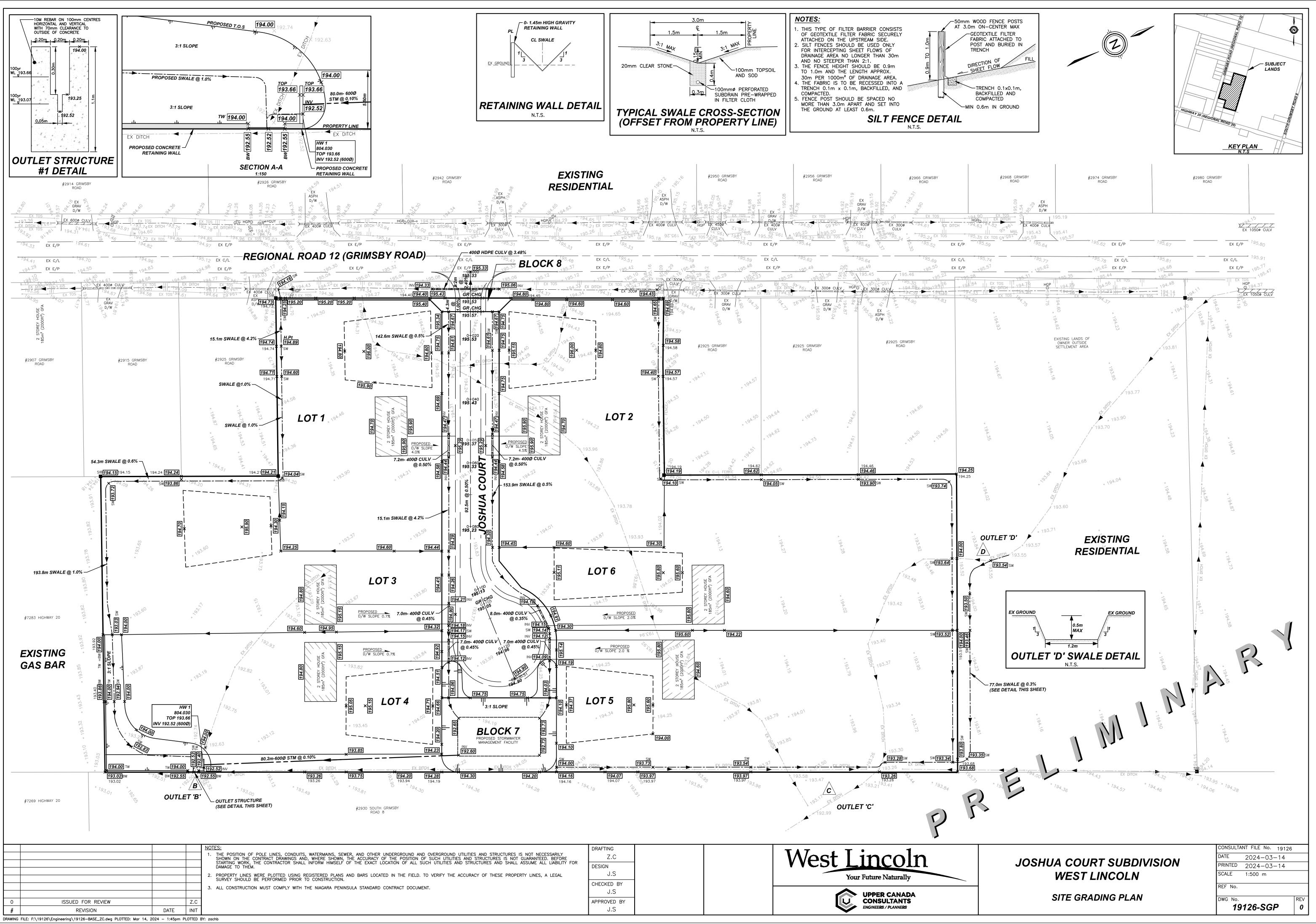
ODWS AO/OG - Ontario Drinking Water Standards Aesthetic Objective/Operational Guideline

NTU - Nephelometric Turbidity Units

CFU - Colony Forming Units


TCU - True Colour Units

ND - Not Detected


Appendix A Draft Plan of Subdivision

DRAWING FILE: F:\19126\Engineering\19126-BASE_ZC.dwg PLOTTED: Mar 15, 2024 - 1:12pm PLOTTED BY: zach

Appendix B Test Pit Logs and Grain Size Analysis

Proje	ect No	. : 7-19-0159-46	Clier	t	: RVL	Contra	acting						Originated by : AB
ate	starte	ed : January 13, 2020	Proje	ect	: Regi	onal R	oad 12						Compiled by : PF
hee	et No.	:1 of 1	Loca	tion	: Ham	let We	est Lincoln, O	ntario					Checked by : PF
	on :						tum : Geodeti	;					
	be : I	Backhoe SOIL PROFILE		644	Drilli MPLES	ng Meth							
Deptn Scale (m)	Elev Depth (m)	Description	Graphic Log	Number	Type	Elevation Scale (m)	Undrained Shear S O Unconfined Pocket Penet Field Vane Lab Vane		Moisture / Pla	Liquid	Headspace Vapour (ppm)	Unstabilized Water Level	Lab Data and Comments GRAIN SIZE DISTRIBUTION (
ב 0		GROUND SURFACE 200mm TOPSOIL	Ū V	_		ш	40 80 1	20 160	10 20	30			(MIT) GR SA SI (
.5	0.2	SILTY CLAY, trace sand, trace organics, iron staining, grey / brown											
D				1	GS								0 2 30
5													
)				2	GS							Ā	
ō		becoming dense											
				3	GS								

below grade; test pit was open upon completion of excavation.

file: 7-19-0159-46 - rr12 hamlet.gpj

oject N	lo. : 7-19-0159-46	Clier	nt	: RVL	Contra	acting									Originated by : A
te stai	ted : January 13, 2020	Proje	ect	: Regi	onal R	oad 12									Compiled by : F
eet No	b. :1 of 1	Loca	ition	: Ham	let We	est Linc	oln, Oi	ntario)						Checked by : F
ition	:			Eleva	ation Da	itum : (Geodeti	c							
type	: Backhoe				ng Meth	od :									
	SOIL PROFILE	5	SAM	MPLES	<u>sale</u>		d Shear S confined	trength	(kPa)	Mois	sture / I	Plasticity	e - ace	.	Lab Data and
Elev		ic Lo	Number	Type	on S (m)		cket Penet Id Vane	rometer		Plastic Limit	Natur Water Co	al Liquid Intent Limit	Headspace Vapour (ppm)	Unstabilized Water Level	Comments
Elev Dept (m)		Graphic Log	Nun	Тy	Elevation Scale (m)		o Vane			PL	. мс	; LL 30	Ŧ	Wa	GRAIN SIZ DISTRIBUTIO (MIT)
-	GROUND SURFACE 150mm TOPSOIL	<u>3 4</u>	1		ш	40	80 1	20 1	60	10	20	30			GR SA SI
		<u>17</u> · <u>24 ·</u>													
0	.2 CLAYEY SILT, trace sand, trace organ iron staining, grey / brown	cs,	}												
			1	GS											
			1												
			1												
]												
			2	GS										$\overline{\Delta}$	
			}												
2															
	brown														
			1												
			1												
]												
			}												
			3	GS											
			1												

3.1 END OF TEST PIT

Unstabilized water level measured at 1.8m below grade; test pit was open upon completion of excavation.

oject	No.	: 7-19-0159-46	Clien	ıt	: RVL	Contra	acting								Originated by : A
te sta	arte	d :January 13, 2020	Proje	ect	: Regi	onal R	oad 1	2							Compiled by : P
eet N	No.	:1 of 1	Loca	tion	: Ham	let We	est Line	coln, On	tario						Checked by : P
ition	:				Eleva	ation Da	atum :	Geodetic							
type	: E	Backhoe				ng Meth	nod :			_					
:		SOIL PROFILE	ŋ		MPLES	Elevation Scale (m)		ed Shear Str nconfined	ength (kPa) N	loisture /	Plasticity	ur ace	e g	Lab Data and
El De (r	lev epth	Description	Graphic Log	Number	Type	(m)		ocket Penetro eld Vane	ometer	Plas Limit	tic Natur t Water Co	al Liquid ontent Limit	Headspace Vapour (ppm)	Unstabilized Water Level	Comments
. (r	m)		Sraph	Nur	L L	levat	■ La	ab Vane					He Fe	58	GRAIN SIZE DISTRIBUTION (MIT)
-	-	GROUND SURFACE 150mm TOPSOIL	<u>, si 14</u>			ш	40	80 12	0 160		10 20	30			GR SA SI
			<u>''</u> '												
	0.2	SILTY CLAY, trace sand, trace organics, grey / brown				-									
				1	GS										0 4 3
				2	GS										
				1											
						-									
				3	GS										
				-		-									
				1											
				1											
				1											
				1											
\vdash	2.5	CLAYEY SILT, trace sand, dense, grey /				-								Σ	
		brown		4	GS										
]											
]											
L	3.2	END OF TEST PIT		,	1	1	I		I			I			
		Unstabilized water level measured at 2.5m													

ect No.	. 7 10 0150 46									OF TEST PIT
	: 7-19-0159-46	Clien	t	: RVL	Contra	acting				Originated by : A
starte	d :January 13, 2020	Proje	ect	: Regi	onal R	oad 12				Compiled by : P
et No.	:1 of 1	Loca	tion	: Ham	let We	est Lincoln, Or	Itario			Checked by : P
	Backhoe									
			SAN				enoth (kPa)			Lab Data
Elev Depth (m)	Description	Graphic Log	Number	Type	Elevation Scal (m)	 O Unconfined ● Pocket Penetri + Field Vane ■ Lab Vane 	ometer	Plastic Natural Liquid Limit Water Content Limit	Headspace Vapour (ppm)	and Comments GRAINSIZE DISTRIBUTION (MIT)
	300mm TOPSOIL				ш	40 80 12	20 160	10 20 30		GR SA SI
		12 · <u>1</u> 4 · 1 · <u>14 · 1</u>								
0.3	SILTY CLAY, trace organics, grey / brown	<u>i, xi</u>	1	GS						
	trace boulders and sand									
	becoming dense		2	GS						
			3	GS						
	Elev Depth (m)	on : pe : Backhoe SOIL PROFILE Elev Depth (m) GROUND SURFACE 300mm TOPSOIL 0.3 SILTY CLAY, trace organics, grey / brown trace boulders and sand	on : pe : Backhoe SOIL PROFILE Description Elev Depth (m) GROUND SURFACE 300mm TOPSOIL SUPPORT (Stress) 0.3 SILTY CLAY, trace organics, grey / brown trace boulders and sand	on : pe : Backhoe SOIL PROFILE SAN Elev Depth GROUND SURFACE 0.3 SILTY CLAY, trace organics, grey/brown 1 0.3 SILTY CLAY, trace organics, grey/brown 2 0.4 trace boulders and sand 2 becoming dense 2	on : Eleve pe : Backhoe Drillin SOIL PROFILE SAMPLES Eleve Depth (m) GROUND SURFACE 300mm TOPSOIL 0.3 SILTY CLAY, trace organics, grey / brown trace boulders and sand 2 GS 2 GS	on :: Elevation De pe :: Backhoe Drilling Meth SOIL PROFILE SAMPLES Description 01 of one	on : Elevation Datur : Geodetic pe : Backhoe Drilling Method : SOIL PROFILE SAMPLES Undrained Shear St O Uncettered Begin GROUND SURFACE 300mm TOPSOIL 0.3 SILTY CLAY, trace organics, grey / brown trace boulders and sand trace boul	on : : : : : : : : : : : : : : : : : : :	on : Elevation Datum : Geodetic pri : Backhoe Drilling Method : SOIL PROFILE SAMPLES GROUND SURFACE OF CONTROL OF CON	n : Elevation Datum : Geodetic priling Method : SolL PROFILE SolL PROFILE SolL PROFILE SolL PROFILE SolL PROFILE Beaching Description GROUND SURFACE 300mm TOPSOL 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Test pit was dry and open upon completion of excavation.

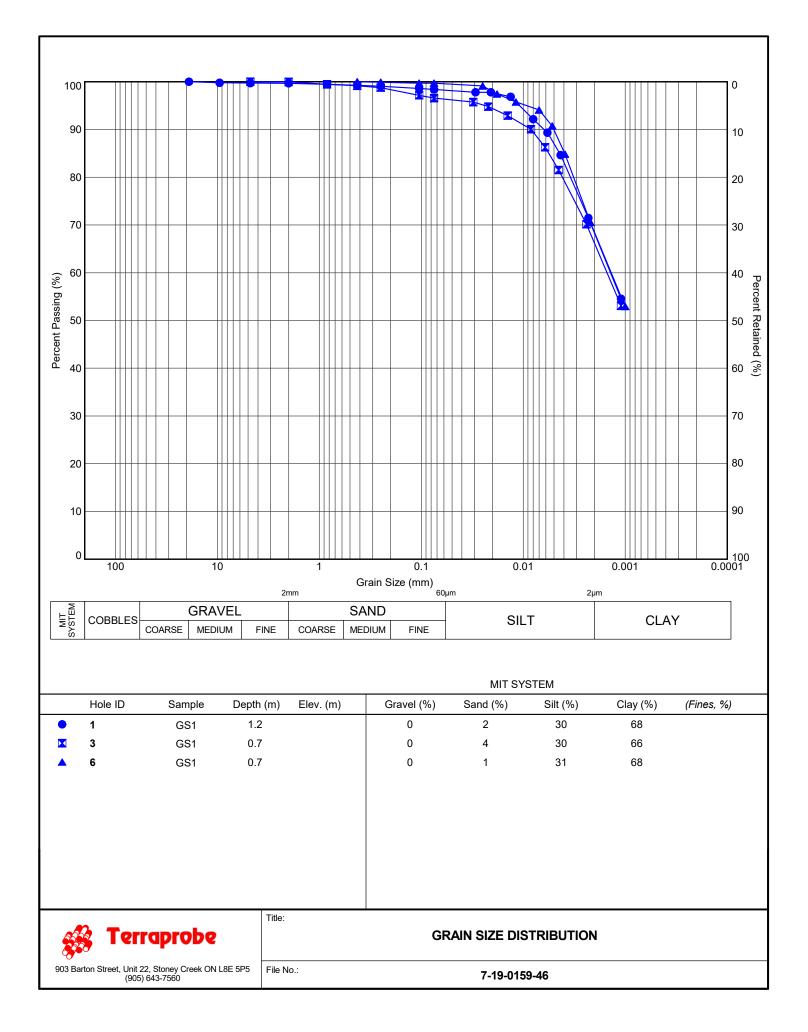
rojeo	ct No	. : 7-19-0159-46	Clier	nt	: RVL	Contra	acting								Originated by : AB
)ate s	starte	ed : January 13, 2020	Proje	ect	: Regi	onal R	oad 12								Compiled by : PR
heet	No.	:1 of 1	Loca	ition	: Ham	let We	st Linco	ln, On	itario						Checked by :PR
ositio							tum : Ge	eodetic							
ig type	e : I	Backhoe				ng Meth									
Depth S	Elev Depth (m)	SOIL PROFILE Description GROUND SURFACE	Graphic Log	Number	MPLES ed. L	Elevation Scale (m)	+ Field ■ Lab V	nfined et Penetro Vane ′ane		Plastic	Natural Vater Content MC 2,0	Liquid Limit LL J 30	Headspace Vapour (ppm)	Unstabilized Water Level	Lab Data and Comments GRAIN SIZE DISTRIBUTION (% (MT) GR SA SI C
1.0	0.2	200mm TOPSOIL SILTY CLAY, trace sand, grey/brown			GS										
2.0		becoming dense		2	GS									Ā	

3.1 END OF TEST PIT

Unstabilized water level measured at 2.5m below grade; test pit was open upon completion of excavation.

oject N	lo. : 7-19-0159-46	Clier	nt	: RVL	Contra	acting								Originated by : AB
te star	ted : January 13, 2020	Proje	ect	: Regi	onal R	oad 12								Compiled by : PR
eet No	o. :1 of 1	Loca	ition	: Ham	let We	st Linco	In, Ont	ario						Checked by : PR
ition				Eleva	ation Da	tum : G	eodetic							
type	: Backhoe				ng Meth	od :								
	SOIL PROFILE	b		/IPLES	Scale	Undrained O Unco		ength (kPa)	Mo	oisture /	Plasticit		ed Vel	Lab Data and
Elev Dept (m)	Th Description	Graphic Log	Number	Type	Elevation Scale (m)	 Pock Field Lab 		neter	Plastic Limit	Water C PL M	C LL	Headspace Vapour (ppm)	Unstabilized Water Level	Comments GRAIN SIZE DISTRIBUTION (% (MIT)
-	GROUND SURFACE 150mm TOPSOIL		1		Ξ	4,0	80 120) 160	1	0 2	0 30			GR SA SI C
		<u>31 hr</u> [/] - <u>3¹ - 17</u>												
0.	² SILTY CLAY, grey / brown													
			1	GS										0 1 31
]											
			1											
]											
]											
			2	GS										
			1											
	becoming dense													
			3	GS										
			1											

3.1 END OF TEST PIT


Test pit was dry and open upon completion of excavation.

file: 7-19-0159-46 - rr12 hamlet.gpj

oje	ct No	: 7-19-0159-46	Clier	nt	: RVL	Contra	acting							Originated by : Al
te	starte	d :January 13, 2020	Proje	ect	: Regi	onal R	load 12							Compiled by : PI
ee	t No.	:1 of 1	Loca	ation	: Ham	let We	est Linco	ln, Or	ntario					Checked by : P
itio	n :				Eleva	ation Da	atum : Ge	eodetic	;					
typ	e : E	Backhoe				ng Meth	iod :			1				
	Elev Depth	SOIL PROFILE Description	Graphic Log	Number	APLES add	Elevation Scale (m)	O Uncol Pocket Field	nfined et Penetr Vane	trength (kPa) rometer	Plastic N Limit Wate	/ Plasticity	Headspace Vapour (ppm)	Unstabilized Water Level	Lab Data and Comments grain size
	(m)	GROUND SURFACE			F	Elevi	■ Lab \ 40		20 160	PL I 10	AC LL		~~	GRAIN SIZE DISTRIBUTION (MIT) GR SA SI
t		150mm TOPSOIL	11.54	3				00						
ł	0.2	CILITY CLAY trace cand trace organics		1										
		SILTY CLAY, trace sand, trace organics, iron staining, grey / brown		1	GS									
				2	GS									
		becoming dense				-								
													₽	
				3	GS									

Unstabilized water level measured at 2.0m below grade; test pit was open upon completion of excavation.

file: 7-19-0159-46 - rr12 hamlet.gpj

Appendix C Well Survey Materials

December 18, 2019

File No. 7-19-0159-46 Stoney Creek Office

RE: **PRIVATE WELL SURVEY** HYDROGEOLOGICAL STUDY – ENVIRONMENTAL ASSESSMENT GRIMSBY ROAD RESIDENTIAL SEVERENCE PART OF LOT 17, CONCESSION 8 TOWNSHIP OF WEST LINCOLN

Dear Resident/Property Owner:

Terraprobe was retained by RVL Contracting to complete a well survey for residences within a 500 m radius of the above property. The subject property is comprised of an irregular parcel of land covering an area of approximately 8.1 acres (3.3 hectares) located east of Grimsby Road approximately 175 m north of Regional Road 20. The site is currently undeveloped and consists of an agricultural field. It is proposed to sever the property to create seven residential lots between 1.0 to 1.3 acres in size. The proposed residential lots are to be serviced with private water supply wells and septic tile beds on a proposed cul-de-sac road.

This well survey is being completed to determine the locations of private supply wells surrounding the subject property and to obtain information to the construction details and operational history of water supply wells surrounding the subject property. Baseline water level measurements and water quality sampling will be completed where private wells are accessible and permission is granted by property owners to document the existing condition and quality of ground water in the vicinity of the site prior to development.

As part of the well survey, a representative of Terraprobe has visited your home to complete a brief questionnaire regarding the operating history and construction details of your well. This letter was left because you were not present when our representative visited your home. The information we hope to obtain will include:

- 1. The location of well(s) and septic bed, if known;
- 2. The depth, diameter and construction details of the well(s);
- 3. The pump type and depth, and any water treatment systems in use;
- 4. Information regarding the past performance of the well(s) (i.e. water quality and yield).

As part of the well survey Terraprobe is collecting water quality samples and will measure and document the ground water level and well depth should wells be accessible. This information will be used to provide a baseline assessment of

Terraprobe Inc.

Greater Toronto 11 Indell I ane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (905) 643-7560 Fax: 643-7559 (705) 739-8355 Fax: 739-8369 www.terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 ground water conditions surrounding the site. Water quality sampling will be submitted to a third party accredited laboratory for analysis. All results will be made available to residents at no cost.

Should you be interested in participating the private well survey please contact Paul Raepple of Terraprobe at (905) 643-7560, or by email at <u>praepple@terraprobe.ca</u>. Any questions you may have regarding the well survey and monitoring program can be answered at that time. A copy of the completed questionnaire can be provided to you upon your request. We encourage participation in the survey so that a detailed inventory of private wells and background water quality and ground water levels in the vicinity of the proposed residential development can be compiled and assessed in advance of the proposed works.

We understand that your participation in this survey is voluntary; however your co-operation is greatly appreciated. Thank you for your consideration of our private well survey.

Yours truly, **Terraprobe Inc.**

Paul Raepple, P.Geo.

Terraprobe	Pr	ίv	ra	t	e	V	Ve	əl		S				У		
I.D. No												D	ATE			-
OWNER	ORIGINAL OW	IER										_				
ADDRESS																
LOT/CONC./TWP.				_				- 22	: s							
WELL DETAILS	0							WE		USE						-
TYPE DIAMETER _		WE	LL U	JSE						_						
CASING SCREEN																
PUMP TYPE & DEPTH		WA	TER	Q	JALI	TY										
WATER TREATMENT		WA	TER	QL	JAN	τιτγ										
DATE CONSTRUCTED	the second s	EVE	ER B	IOU	IGH1	r w⁄	TEF	.?	_							_
DEPTH	Meas/Stated		W	1EN	1? W	/HY?					_					-
WATER LEVEL	b.m.p.	PRE	EVIO	ous	PR	OBL	EMS	MT	ΉW	ÆLL	(Wŀ-	IEN?)			
STICK-UP	a.g.l.		_	-			-		_	_			_			
													1	_		
		сом	MEN	VTS	S:											
· · · · · · · · · · · · · · · · · · ·																_
WELL CONSTRUCTION	÷	WEL	_Լ Լ	.00	CAT	IO	115	ЪР	nc							
		•	796 S.	٠	•	0.		•	÷	۲	•	٠	•		•	•
		•). .)	×	3	2			•2		•	•	·			•
	2	•	•	•	3	٠		•	•	•	٠		•	3.02 1275		
		•	2	•	2	2.0	•	•	•	() 				2.83		•
		•	3	×	•	2.00	2		•	٠				•		•
		•		\$			•		•		•		•		•	
		۰.		•		•	4		•2	٠	٠	~		198	** 	
		•	8	•	•	340	*	•	•	S. C. S.	*	85	*	2.00	65	\$
NOTES:																
		OWN	ER:							_						-
GEODETIC ELEVATION:		ENGI	NEE	R:												-
MOE WELL No.:		PERN	AISS	101	V TO) SU	RVE	YW	ELL:		-	_				-

Appendix D Laboratory Certificates of Analysis

CLIENT NAME: TERRAPROBE INC 903 Barton Street Stoney Creek, ON L8E5P5 (905) 643-7560

ATTENTION TO: Paul Raepple

PROJECT: 7-19-0159-46

AGAT WORK ORDER: 19H554047

MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Dec 16, 2019

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOT	TES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 11

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific driving water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19H554047 PROJECT: 7-19-0159-46

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

ATTENTION TO: Paul Raepple

DATE REPORTED: 2019-12-16

SAMPLED BY:

Total Coliforms & E. Coli (Using MI Agar)

DATE RECEIVED: 2019-12-09

						Bitt	510
	SAI	MPLE DES	CRIPTION:	7226	7378		
		SAM	PLE TYPE:	Water	Water		
		DATE	SAMPLED:	2019-12-09	2019-12-09		
Parameter	Unit	G/S	RDL	787674	787820		
Escherichia coli	CFU/100mL		1	NDOGT	NDOGT		
Total Coliforms	CFU/100mL		1	NDOGT	NDOGT		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

787674-787820 NDOGT - No Data; Overgrown with Target, refers to over-crowding microbial growth.

Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19H554047 PROJECT: 7-19-0159-46

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Paul Raepple

SAMPLED BY:

			Water	Quality A	ssessment -	Drinking Water (mg/L)	
DATE RECEIVED: 2019-12-09							DATE REPORTED: 2019-12-16
Parameter	SA		CRIPTION: PLE TYPE: SAMPLED: RDL	7226 Water 2019-12-09 787674	7378 Water 2019-12-09 787820		
Electrical Conductivity	µS/cm	0,0	2	3340	3140		
βH	pH Units		NA	7.60	7.64		
Total Hardness (as CaCO3) (Calculated)	mg/L		0.5	2150	885		
Total Dissolved Solids	mg/L		20	3370	2020		
Alkalinity (as CaCO3)	mg/L		5	441	273		
Fluoride	mg/L	1.5	1.0	<1.0	<1.0		
Chloride	mg/L		2.0	47.2	811		
Nitrate as N	mg/L	10.0	1.0	<1.0	6.2		
Nitrite as N	mg/L	1.0	1.0	<1.0	<1.0		
Bromide	mg/L		1.0	<1.0	<1.0		
Sulphate	mg/L		2.0	1890	105		
Ortho Phosphate as P	mg/L		2.0	<2.0	<2.0		
Reactive Silica	mg/L		0.05	15.3	11.4		
Ammonia + Ammonium as N	mg/L		0.02	0.17	<0.02		
Total Phosphorus	mg/L		0.02	0.21	0.04		
Total Organic Carbon	mg/L		0.5	5.1	2.0		
Colour	Apparent CU		5	189	<5		
Turbidity	NTU		0.5	15.1	0.7		
Total Calcium	mg/L		0.25	234	194		
Total Magnesium	mg/L		0.25	381	97.3		
Total Sodium	mg/L	20	0.25	98.7	194		
Total Potassium	mg/L		0.25	6.60	3.97		
Total Aluminum	mg/L		0.004	0.011	0.007		
Total Antimony	mg/L	0.006	0.003	<0.003	<0.003		
Total Arsenic	mg/L	0.01	0.003	<0.003	<0.003		
Total Barium	mg/L	1	0.002	0.032	0.200		
Total Beryllium	mg/L		0.001	<0.001	<0.001		
Total Boron	mg/L	5	0.010	0.066	0.044		
Total Cadmium	mg/L	0.005	0.001	<0.001	0.002		

Certified By:

Jacky 2th

AGAT WORK ORDER: 19H554047 PROJECT: 7-19-0159-46

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

ATTENTION TO: Paul Raepple

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

Water Quality Assessment - Drinking Water (mg/L) DATE RECEIVED: 2019-12-09 **DATE REPORTED: 2019-12-16** SAMPLE DESCRIPTION: 7226 7378 SAMPLE TYPE: Water Water DATE SAMPLED: 2019-12-09 2019-12-09 G/S RDL 787674 787820 Parameter Unit Total Chromium mg/L 0.05 0.003 < 0.003 < 0.003 Total Cobalt mg/L 0.001 < 0.001 < 0.001 Total Copper < 0.003 0.004 mg/L 0.003 0.117 Total Iron mg/L 0.010 3.66 Total Lead mg/L 0.01 0.001 0.001 0.002 Total Manganese mg/L 0.002 0.215 0.133 Total Mercury mg/L 0.001 0.0001 < 0.0001 < 0.0001 Total Molybdenum mg/L 0.002 < 0.002 < 0.002 Total Nickel 0.003 < 0.003 < 0.003 mg/L Total Selenium mg/L 0.05 0.004 < 0.004 < 0.004 Total Silver ma/L 0.002 < 0.002 < 0.002 Total Strontium 0.005 0.815 mg/L 1.86 < 0.006 Total Thallium 0.006 <0.006 mg/L 0.023 0.002 Total Titanium mg/L 0.002 Total Tungsten mg/L 0.010 <0.010 < 0.010 Total Uranium mg/L 0.02 0.002 0.004 0.002 Total Vanadium mg/L 0.002 < 0.002 < 0.002 Total Zinc mg/L 0.005 0.051 0.585 Total Zirconium mg/L 0.004 < 0.004 < 0.004

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Ontario Drinking Water Quality Standards. Na value is derived from O. Reg. 248

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

787674-787820 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jacky 2th

	agai	Laboratori	AGAT WORK ORDER: 19H5540 PROJECT: 7-19-0159-46			MISSIS	OOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 /www.agatlabs.com
CLIENT NAME	: TERRAPROBE INC			ATTENTION TO: Paul F	Raepple		guiaboloom
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
787674	7226	O.Reg.169/03(mg/L)	Water Quality Assessment - Drinking Water (mg/L)	Total Sodium	mg/L	20	98.7
787820	7378	O.Reg.169/03(mg/L)	Water Quality Assessment - Drinking Water (mg/L)	Total Sodium	mg/L	20	194

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT: 7-19-0159-46

SAMPLING SITE:

AGAT WORK ORDER: 19H554047

ATTENTION TO: Paul Raepple

SAMPLED BY:

			Mic	crobio	olog	y Ana	alysis	5							
RPT Date: Dec 16, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lir	eptable nits	Recovery	Lin	eptable nits
TY TO THE FER	Daton	ld	Dup	5 ap //2			Value	Lower	Upper			Upper	1,		Upper
Total Coliforms & E. Coli (Usin	g MI Agar)														
Escherichia coli	787674	787674	NDOGT	NDOGT	NA	< 1									
Total Coliforms	787674	787674	NDOGT	NDOGT	NA	< 1									

Comments: NDOGT - No Data; Overgrown with Target, refers to over-crowding microbial growth.NA - % RPD Not Applicable.

Certified By:

Nivine Basily

Page 6 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 11

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT: 7-19-0159-46

SAMPLING SITE:

AGAT WORK ORDER: 19H554047 ATTENTION TO: Paul Raepple

SAMPLED BY:

RPT Date: Dec 16, 2019 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MA PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Method Blank Acceptable Limits Acceptable Limits Acceptable Limits Acceptable Limits Recovery Acceptable Limits Recovery Acceptable Limits Recovery Acceptable Limits Recovery Acceptable Limits Recovery Acceptable Recovery Acceptable Recovery Acceptable Recovery Acceptable Recovery Acceptable Recovery Recovery Acceptable Recovery Recovery	Acceptabl
PARAMETER Batch Sample Dup #1 Dup #2 RPD Blank Measured Limits Recovery Limits Recovery Limits Recovery	Limits
	1 1
Water Quality Assessment - Drinking Water (mg/L)	
Electrical Conductivity 755648 673 669 0.6% < 2 96% 80% 120%	
pH 786414 7.98 8.06 1.0% NA 100% 90% 110%	
Total Dissolved Solids 787674 787674 3370 3470 2.9% < 20 102% 80% 120%	
Alkalinity (as CaCO3) 786414 86 86 0.0% < 5 97% 80% 120%	
Fluoride 783952 <0.25 NA < 0.05 106% 90% 110% 104% 90% 110% 101%	85% 115
Chloride 783952 26.0 25.3 2.7% < 0.10 91% 90% 110% 99% 90% 110% 104%	85% 115
Nitrate as N 783952 1.12 1.09 2.7% < 0.05 95% 90% 110% 98% 90% 110% 103%	85% 115
Nitrite as N 783952 <0.25 <0.25 NA < 0.05 NA 90% 110% 102% 90% 110% 100%	85% 115
Bromide 783952 <0.25 <0.25 NA < 0.05 104% 90% 110% 93% 90% 110% 102%	85% 115
Sulphate 783952 362 352 2.8% < 0.10 99% 90% 110% 100% 90% 110% 103%	85% 115
Ortho Phosphate as P 783952 <0.50 <0.50 NA < 0.10 95% 90% 110% 97% 90% 110% 94%	80% 120
Reactive Silica 787674 787674 15.3 15.3 0.0% < 0.05 102% 90% 110% 90%	80% 120
Ammonia + Ammonium as N 787674 787674 0.17 0.16 6.1% < 0.02 100% 90% 110% 102% 90% 110% 99%	70% 130
Total Phosphorus 787674 787674 0.21 0.22 4.7% < 0.02 92% 90% 110% 92% 90% 110% 106%	80% 120
Total Organic Carbon 787674 787674 5.1 5.2 1.9% < 0.5 101% 90% 110% 90% 110% 96%	80% 120
Colour 787674 787674 189 189 0.0% < 5 99% 90% 110%	
Turbidity 787325 <0.5 <0.5 NA < 0.5 98% 90% 110%	
Total Calcium 787674 787674 234 236 0.9% < 0.05 96% 90% 110% 96% 90% 110% 88%	70% 130
Total Magnesium 787674 787674 381 384 0.8% < 0.05 98% 90% 110% 97% 90% 110% 90%	70% 130
Total Sodium 787674 787674 98.7 99.8 1.1% < 0.05 100% 90% 110% 99% 90% 110% 92%	70% 130
Total Potassium 787674 787674 6.60 6.64 0.6% < 0.05 99% 90% 110% 99% 90% 110% 93%	70% 130
Total Aluminum 787674 787674 0.011 0.010 NA < 0.004 100% 90% 110% 99% 90% 110% 92%	70% 130
Total Antimony 787674 787674 <0.003 <0.003 NA < 0.003 98% 90% 110% 91% 90% 110% 87%	70% 130
Total Arsenic 787674 787674 <0.003 <0.003 NA < 0.003 102% 90% 110% 98% 90% 110% 97%	70% 130
Total Barium 787674 787674 0.032 0.033 3.1% < 0.002 95% 90% 110% 97% 90% 110% 94%	70% 130
Total Beryllium 787674 787674 <0.001 <0.001 NA < 0.001 100% 90% 110% 98% 90% 110% 92%	70% 130
Total Boron 787674 787674 0.066 0.071 7.3% < 0.010 102% 90% 110% 102% 90% 110% 97%	70% 130
Total Cadmium 787674 787674 <0.001 <0.001 NA < 0.001 100% 90% 110% 98% 90% 110% 109%	70% 130
Total Chromium 787674 787674 <0.003 <0.003 NA < 0.003 98% 90% 110% 98% 90% 110% 95%	70% 130
Total Cobalt 787674 787674 <0.001 NA < 0.001 94% 90% 110% 94% 90% 110% 90%	70% 130
Total Copper 787674 787674 <0.003 <0.003 NA < 0.003 101% 90% 110% 103% 90% 110% 86%	70% 130
Total Iron 787674 787674 3.66 3.72 1.6% < 0.010 104% 90% 110% 107% 90% 110% 82%	70% 130
Total Lead 787674 787674 0.001 <0.001 NA < 0.001 92% 90% 110% 92% 90% 110% 91%	70% 130
Total Manganese 787674 787674 0.215 0.220 2.3% < 0.002 97% 90% 110% 97% 90% 110% 90%	70% 130
Total Mercury 787674 787674 <0.0001 NA < 0.0001 104% 90% 110% 104% 80% 120% 99%	80% 120
Total Molybdenum 787674 787674 <0.002 <0.002 NA < 0.002 101% 90% 110% 99% 90% 110% 105%	70% 130
Total Nickel 787674 787674 <0.003 <0.003 NA < 0.003 105% 90% 110% 104% 90% 110% 92%	70% 130
Total Selenium 787674 787674 <0.004 <0.004 NA < 0.004 98% 90% 110% 94% 90% 110% 102%	70% 130
Total Silver 787674 787674 <0.002 <0.002 NA < 0.002 102% 90% 110% 103% 90% 110% 101%	70% 130

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT: 7-19-0159-46

SAMPLING SITE:

AGAT WORK ORDER: 19H554047 ATTENTION TO: Paul Raepple SAMPLED BY:

Water Analysis (Continued)

					-	· · · · · · · · · · · · · · · · · · ·										
RPT Date: Dec 16, 2019			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Plank Massured Limita		Recovery	1 1 1 10	ptable nits					
		IG							Upper		Lower Upper			Lower	Upper	
Total Strontium	787674	787674	1.86	1.91	2.7%	< 0.005	95%	90%	110%	93%	90%	110%	87%	70%	130%	
Total Thallium	787674	787674	<0.006	<0.006	NA	< 0.006	96%	90%	110%	102%	90%	110%	90%	70%	130%	
Total Titanium	787674	787674	0.023	0.024	4.3%	< 0.002	99%	90%	110%	97%	90%	110%	98%	70%	130%	
Total Tungsten	787674	787674	<0.010	<0.010	NA	< 0.010	96%	90%	110%	94%	90%	110%	98%	70%	130%	
Total Uranium	787674	787674	0.004	0.005	NA	< 0.002	96%	90%	110%	91%	90%	110%	98%	70%	130%	
Total Vanadium	787674	787674	<0.002	<0.002	NA	< 0.002	94%	90%	110%	93%	90%	110%	96%	70%	130%	
Total Zinc	787674	787674	0.051	0.051	0.0%	< 0.005	98%	90%	110%	96%	90%	110%	87%	70%	130%	
Total Zirconium	787674	787674	<0.004	<0.004	NA	< 0.004	95%	90%	110%	93%	90%	110%	98%	70%	130%	

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Jacky 2th

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 8 of 11

CLIENT NAME: TERRAPROBE INC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 19H554047

PROJECT: 7-19-0159-46		ATTENTION TO:	ATTENTION TO: Paul Raepple							
SAMPLING SITE: SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Microbiology Analysis	L									
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration							
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration							

Method Summary

CLIENT NAME: TERRAPROBE INC

PROJECT: 7-19-0159-46

SAMPLING SITE:

AGAT WORK ORDER: 19H554047 ATTENTION TO: Paul Raepple

/			uui	1 aopr
SAMPL	ED B	Y:		

SAMPLING SITE:	1	SAMPLED BY:	1				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Water Analysis		· · ·					
Electrical Conductivity	INOR-93-6016	SM 2510 B	EC METER				
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE				
Total Hardness (as CaCO3) (Calculated)	MET-93-6105	EPA SW-846 6010C & 200.7	CALCULATION				
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE				
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE				
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Ortho Phosphate as P	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Reactive Silica	INOR-93-6070	QuickChem 10-114-27-1-A & SM 450 Si-F					
Ammonia + Ammonium as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA				
Total Phosphorus	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER				
Total Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310	SHIMADZU CARBON ANALYZER				
Colour	INOR-93-6046	SM 2120 C	SPECTROPHOTOMETER				
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER				
Total Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Total Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Total Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Total Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Total Aluminum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
		EPA SW-646 6020A & 200.8 EPA SW-846 6020A & 200.8	ICP-MS				
Total Copper Total Iron	MET-93-6103		ICP-MS				
	MET-93-6103	EPA SW-846 6020A & 200.8					
Total Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS				
Total Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Titanium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Tungsten	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Total Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				

Drinking Water Chain o	f Custody			ratori	<u> </u>	rt Holdi 5100 • F: 90	ng 05.7:	Ti 12.5	™e	Coopers Avenue Aississauga, ON L4Z 1Y2 .800.856.6261	Labo Arriva Arriva AGAT	al Co al Ter Job	nditi npe	ion: ratu	re:					or (co 9, 04=	7 4 7 10.8
Client Information Company: Terraprobe 1 Contact: Paul Raepple Address: 903 Barton St Stoney Creek, C Phone: 905-643-7460 Fax: PO #:	1. Na En 2. Na En	Report Information Report Format Image: Paul Racple Single Sample Email: Pracpose @ terraprobe.ca Multiple Image: Sample Samples per page Email: Email: Samples per page Facility Type (Check all that are applicable) + Water Type Image: OR Small								On ice \rightarrow i large coolerTurnaround Time Required (TAT) *Regular TAT7 to 14 business daysSch 23/24 only5 to 7 business days \checkmark Rush TAT(please provide prior3 to 4 business days \square Rush							h 23/24 only				
Client Project #: <u>7-19-615</u> AGAT Quotation #:	Res	sidential nicipal	OR OR	Non-F			Di	aw (R), Treated (TR), istribution (D), Tap (TP) rivate Well (P)	Date Re	equire	d (Ru		busir urchar			pply):			apply		
	ot Applicable ther (Please Speci	ify)	DO TH RAW	IE RESULTS RI WATER SAMPI IS RESPONSIBLE MAY DELAY REPOR		TING TO THE MO D BY HUMANS? SUBMIT LAB SERVIC	E NOTH	FICATIO	ON (LSN) FORM TO T	RMA? Yes Mo Yes Mo Yes Mo Yes Mo No Yes Mo Soratory analysis will no		s (Sch. 23)	(Sch. 24)					Nitrite	thanes	al Coliforms	
SAMPLE IDENTIFICATION/LOCATION	DATE SAMPLED	TIME	and the second se	WATER TYPE *	# OF CONTAINERS	CHLORINE RESIDUAL (incl. Units)	STANDING	FLUSHED	СОММ	ENTS/STANDING TI (IN MINUTES)	ME	Inorganics	Organics (Lead	Fluoride	Sodium	Turbidity	Nitrate, Ni	Trihalomethanes	E.coli, Total	3
7226 7378	Dec9/19 Dec9/19	1 30/ 1 00/		P	7			~~		Hered with free											7
Bentiks 1. S + 2 - 1															-0						
Samples Taken By (Print Name and Sigs):				* TAT is exc	I lusive of weeker	l nds and statutor	y holi	l days.	Prior arrangem	nents must be made wi	ith the lat	porato	ry in	order	to su	bmit	Micro	biolo	gy sar	nples	on Fridays
NOTIFICATION INFOR Waterworks Name: MOECC# (He: Waterworks #): Contact: Email: Samples Relinquished By (Print Name and Sign): Amarica Buden Am Samples Relinquished By (Print Name and Sign):		Phone: After Hours Phone	ADVER	se results as SE REPORT Non Int from client above	ING Pa) Report ceived By (Print Name MS Ta	x: table	r Act		aboratory ana	Ilysis will not comm Region: PHU Contact: Phone: Email: Date/Time Date/Time		PPIN	OF Copy		ent	F HE	_	+ (M		of	
Samples Relinduished By (Print Name and Sign):	Jug 1	Dener Time		Samples Re	Convert Byr Print Plane	and the second sec	R	yh 10	yha	Dec 10))	te	کی) c Cor	AGAT		Nº: I	DW	5			0 ed: March 6, 200

CLIENT NAME: TERRAPROBE INC 903 Barton Street Stoney Creek, ON L8E5P5 (905) 643-7560

ATTENTION TO: Paul Raepple

PROJECT:

AGAT WORK ORDER: 19H558965

MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jan 02, 2020

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 11

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19H558965 PROJECT:

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

ATTENTION TO: Paul Raepple

DATE REPORTED: 2020-01-02

SAMPLED BY:Amanda B.

Total Coliforms & E. Coli (Using MI Agar)

DATE RECEIVED: 2019-12-23

	SA	MPLE DES	CRIPTION:	2942	
		SAM	PLE TYPE:	Water	
	DATE SAMPLED:				
Parameter					
Escherichia coli	CFU/100mL		1	ND	
Total Coliforms	CFU/100mL		1	ND	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

827036 If RDL >1 indicates dilutions of the sample.

ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19H558965 PROJECT: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

ATTENTION TO: Paul Raepple

SAMPLED BY:Amanda B.

Water Quality Assessment - Drinking Water (mg/L)

			Water	Quanty 7100	
DATE RECEIVED: 2019-12-23	3				DATE REPORTED: 2020-01-02
	SA	MPLE DES	CRIPTION:	2942	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2019-12-23	
Parameter	Unit	G/S	RDL	827036	
Electrical Conductivity	µS/cm		2	1430	
рН	pH Units		NA	7.51	
Total Hardness (as CaCO3) (Calculated)	mg/L		0.5	877	
Total Dissolved Solids	mg/L		20	1260	
Alkalinity (as CaCO3)	mg/L		5	468	
Fluoride	mg/L	1.5	0.25	<0.25	
Chloride	mg/L		0.50	25.4	
Nitrate as N	mg/L	10.0	0.25	<0.25	
Nitrite as N	mg/L	1.0	0.25	<0.25	
Bromide	mg/L		0.25	<0.25	
Sulphate	mg/L		1.0	593	
Ortho Phosphate as P	mg/L		0.50	<0.50	
Reactive Silica	mg/L		0.05	14.2	
Ammonia + Ammonium as N	mg/L		0.02	0.31	
Total Phosphorus	mg/L		0.02	0.09	
Total Organic Carbon	mg/L		0.5	4.2	
Colour	Apparent CU		5	368	
Turbidity	NTU		0.5	61.3	
Total Calcium	mg/L		0.10	165	
Total Magnesium	mg/L		0.10	113	
Total Sodium	mg/L	20	0.10	58.5	
Total Potassium	mg/L		0.10	2.53	
Total Aluminum	mg/L		0.004	0.012	
Total Antimony	mg/L	0.006	0.003	<0.003	
Total Arsenic	mg/L	0.01	0.003	0.011	
Total Barium	mg/L	1	0.002	0.160	
Total Beryllium	mg/L		0.001	<0.001	
Total Boron	mg/L	5	0.010	0.019	
Total Cadmium	mg/L	0.005	0.001	<0.001	

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 3 of 11

Nivine Basily

AGAT WORK ORDER: 19H558965 PROJECT: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC

SAMPLING SITE:

ATTENTION TO: Paul Raepple

SAMPLED BY:Amanda B.

Water Quality Assessment - Drinking Water (mg/L)

DATE RECEIVED: 2019-12-23

DATE RECEIVED. 2019-12-2	5				DATE REPORTED. 2020
	S	AMPLE DES	CRIPTION:	2942	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2019-12-23	
Parameter	Unit	G/S	RDL	827036	
Total Chromium	mg/L	0.05	0.003	<0.003	
Total Cobalt	mg/L		0.001	<0.001	
Total Copper	mg/L		0.003	<0.003	
Total Iron	mg/L		0.010	12.7	
Total Lead	mg/L	0.01	0.001	0.005	
Total Manganese	mg/L		0.002	0.252	
Total Mercury	mg/L	0.001	0.0001	<0.0001	
Total Molybdenum	mg/L		0.002	0.002	
Total Nickel	mg/L		0.003	<0.003	
Total Selenium	mg/L	0.05	0.004	<0.004	
Total Silver	mg/L		0.002	<0.002	
Total Strontium	mg/L		0.005	0.461	
Total Thallium	mg/L		0.006	<0.006	
Total Titanium	mg/L		0.002	0.006	
Total Tungsten	mg/L		0.010	<0.010	
Total Uranium	mg/L	0.02	0.002	0.003	
Total Vanadium	mg/L		0.002	<0.002	
Total Zinc	mg/L		0.005	0.177	
Total Zirconium	mg/L		0.004	<0.004	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Ontario Drinking Water Quality Standards. Na value is derived from O. Reg. 248

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

827036 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basily

DATE REPORTED: 2020-01-02

	AGAT	Laborator	ies AGAT WORK ORDER: 19H558 PROJECT:			MISSIS	OOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 /www.agatlabs.com
CLIENT NAME	: TERRAPROBE INC			ATTENTION TO: Paul R	aepple	http://	www.agaliabs.com
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
827036	2942	O.Reg.169/03(mg/L)	Water Quality Assessment - Drinking Water (mg/L)	Total Arsenic	mg/L	0.01	0.011

Water Quality Assessment - Drinking Water (mg/L)

2942

O.Reg.169/03(mg/L)

827036

mg/L

20

58.5

Total Sodium

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 19H558965

ATTENTION TO: Paul Raepple

SAMPLED BY: Amanda B.

Microbiology Analysis

							-								
PT Date: Jan 02, 2020		DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	le Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Lie	eptable mits	
		ld					Value	Lower	Upper		Lower	Upper		Lim	Upper
Total Coliforms & E. Coli (Using	MI Agar)														

Escherichia coli	829053	ND	ND	NA	< 1
Total Coliforms	829053	ND	ND	NA	< 1

Comments: ND - Not Detected, NA - % RPD Not Applicable.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 11

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 19H558965

ATTENTION TO: Paul Raepple

SAMPLED BY:Amanda B.

			Wate	er Ar	nalys	İS								
RPT Date: Jan 02, 2020		C	UPLICATI	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	KE	
PARAMETER Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recoverv	Acceptable Limits		Recovery		ptable nits
	ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Water Quality Assessment - Drinking Wate	r (mg/L)													
Electrical Conductivity 808116		71	74	4.1%	< 2	99%	80%	120%						
pH 827036	827036	7.51	7.50	0.1%	NA	100%	90%	110%						
Total Dissolved Solids 827036	827036	1260	1260	0.0%	< 20	102%	80%	120%						
Alkalinity (as CaCO3) 827036	827036	468	472	0.9%	< 5	98%	80%	120%						
Fluoride 829448		<0.25	<0.25	NA	< 0.05	102%	90%	110%	105%	90%	110%	108%	85%	115%
Chloride 829448		27.5	27.5	0.0%	< 0.10	92%	90%	110%	105%	90%	110%	106%	85%	115%
Nitrate as N 829448		<0.25	<0.25	NA	< 0.05	96%	90%	110%	107%	90%	110%	108%	85%	115%
Nitrite as N 829448		<0.25	<0.25	NA	< 0.05	94%	90%	110%	98%	90%	110%	110%	85%	115%
Bromide 829448		<0.25	<0.25	NA	< 0.05	109%	90%	110%	103%	90%	110%	99%	85%	115%
Sulphate 829448		68.5	70.2	2.5%	< 0.10	99%	90%	110%	107%	90%	110%	109%	85%	115%
Ortho Phosphate as P 829448		<0.50	<0.50	NA	< 0.10	97%	90%	110%	102%	90%	110%	107%	80%	120%
Reactive Silica 835449		9.00	8.94	0.7%	< 0.05	103%	90%	110%	103%	90%	110%	99%	80%	120%
Ammonia + Ammonium as N 827036	827036	0.31	0.31	0.0%	< 0.02	96%	90%	110%	101%	90%	110%	98%	70%	130%
Total Phosphorus 827036	827036	0.09	0.09	NA	< 0.02	105%	90%	110%	101%	90%	110%	97%	80%	120%
Total Organic Carbon 827036		4.2	4.4	4.7%	< 0.5	100%	90%	110%	108%	90%	110%	97%	80%	120%
Colour 835320		17	17	NA	< 5	104%	90%	110%						
Turbidity 820444		0.5	0.5	NA	< 0.5	100%	90%	110%						
Total Calcium 835320		152	153	0.7%	< 0.05	96%	90%	110%	99%	90%	110%	94%	70%	130%
Total Magnesium 835320		20.4	21.3	4.3%	< 0.05	94%	90%	110%	96%	90%	110%	92%	70%	130%
Total Sodium 835320		16.8	17.6	4.7%	< 0.05	97%	90%	110%	101%	90%	110%	96%	70%	130%
Total Potassium 835320		1.00	0.93	7.3%	< 0.05	94%	90%	110%	97%	90%	110%	94%	70%	130%
Total Aluminum 820444		0.059	0.059	0.0%	< 0.004	101%	90%	110%	105%	90%	110%	100%	70%	130%
Total Antimony 820444		<0.003	<0.003	NA	< 0.003	105%	90%	110%	95%	90%	110%	90%	70%	130%
Total Arsenic 820444		<0.003	<0.003	NA	< 0.003	103%	90%	110%	102%	90%	110%	98%	70%	130%
Total Barium 820444		0.012	0.012	0.0%	< 0.002	99%	90%	110%	100%	90%	110%	98%	70%	130%
Total Beryllium 820444		<0.001	<0.001	NA	< 0.001	102%	90%	110%	103%	90%	110%	100%	70%	130%
Total Boron 820444		<0.010	<0.010	NA	< 0.010	104%	90%	110%	105%	90%	110%	100%	70%	130%
Total Cadmium 820444		<0.001	<0.001	NA	< 0.001	103%	90%	110%	105%	90%	110%	99%	70%	130%
Total Chromium 820444		<0.003	<0.003	NA	< 0.003	102%	90%	110%	105%	90%	110%	102%	70%	130%
Total Cobalt 820444		<0.001	<0.001	NA	< 0.001	97%	90%	110%	102%	90%	110%	99%	70%	130%
Total Copper 820444		0.119	0.119	0.0%	< 0.003	103%	90%	110%	106%	90%	110%	101%	70%	130%
Total Iron 820444		<0.010	<0.010	NA	< 0.010	99%	90%	110%	106%	90%	110%	109%	70%	130%
Total Lead 820444		<0.001	<0.001	NA	< 0.001	101%	90%	110%	105%	90%	110%	100%	70%	130%
Total Manganese 820444		<0.002	<0.002	NA	< 0.002	96%	90%	110%	100%	90%	110%	97%	70%	130%
Total Mercury 827036	827036	<0.0001	<0.0001	NA	< 0.0001	99%	90%	110%	100%	80%	120%	94%	80%	120%
Total Molybdenum 820444		<0.002	<0.002	NA	< 0.002	102%	90%	110%	103%	90%	110%	99%	70%	130%
Total Nickel 820444		<0.003	<0.003	NA	< 0.003	106%	90%	110%	108%	90%	110%	105%	70%	130%
Total Selenium 820444		<0.004	<0.004	NA	< 0.004	102%	90%	110%	100%	90%	110%	95%	70%	130%
Total Silver 820444		<0.002	<0.002	NA	< 0.002	106%	90%	110%	110%	90%	110%	113%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 19H558965 ATTENTION TO: Paul Raepple SAMPLED BY:Amanda B.

Water Analysis (Continued)

						`		,							
RPT Date: Jan 02, 2020			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Lin	eptable nits	Recovery	Lin	eptable mits
		ld						Lower	Upper		Lower	Upper		Lower	Upper
Total Strontium	820444		0.041	0.041	0.0%	< 0.005	99%	90%	110%	101%	90%	110%	98%	70%	130%
Total Thallium	820444		<0.006	<0.006	NA	< 0.006	104%	90%	110%	104%	90%	110%	100%	70%	130%
Total Titanium	820444		<0.002	< 0.002	NA	< 0.002	95%	90%	110%	98%	90%	110%	97%	70%	130%
Total Tungsten	820444		<0.010	<0.010	NA	< 0.010	98%	90%	110%	105%	90%	110%	99%	70%	130%
Total Uranium	820444		<0.002	< 0.002	NA	< 0.002	95%	90%	110%	99%	90%	110%	96%	70%	130%
Total Vanadium	820444		<0.002	<0.002	NA	< 0.002	95%	90%	110%	98%	90%	110%	97%	70%	130%
Total Zinc	820444		<0.005	<0.005	NA	< 0.005	100%	90%	110%	102%	90%	110%	97%	70%	130%
Total Zirconium	820444		<0.004	<0.004	NA	< 0.004	97%	90%	110%	98%	90%	110%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

Page 8 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

CLIENT NAME: TERRAPROBE INC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 19H558965

PROJECT: ATTENTION TO: Paul Raepple									
SAMPLING SITE:		SAM	IPLED BY:Amanda B.						
PARAMETER	AGAT S.O.P	LITERATURE REF	ERENCE ANALYTIC	CAL TECHNIQUE					
Microbiology Analysis	· · ·		L						
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filt	Membrane Filtration					
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filt	Membrane Filtration					

Method Summary

CLIENT NAME: TERRAPROBE INC

PROJECT:

AGAT WORK ORDER: 19H558965 ATTENTION TO: Paul Raepple

SAMPLING SITE:		SAMPLED BY:A	manda B.					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis	1							
Electrical Conductivity	INOR-93-6016	SM 2510 B	EC METER					
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE					
Total Hardness (as CaCO3) (Calculated)	MET-93-6105	EPA SW-846 6010C & 200.7	CALCULATION					
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE					
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Ortho Phosphate as P	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Reactive Silica	INOR-93-6070	QuickChem 10-114-27-1-A & SM 450 Si-F	⁰⁰ LACHAT FIA					
Ammonia + Ammonium as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA					
Total Phosphorus	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER					
Total Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310	SHIMADZU CARBON ANALYZER					
Colour	INOR-93-6046	SM 2120 C	SPECTROPHOTOMETER					
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER					
Total Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Total Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Total Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Total Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Total Aluminum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS					
Total Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Titanium	MET-93-6103	EPA SW-846 6020A & 200.8 EPA SW-846 6020A & 200.8	ICP-MS					
Total Tungsten	MET-93-6103 MET-93-6103	EPA SW-846 6020A & 200.8 EPA SW-846 6020A & 200.8	ICP-MS					
-								
Total Uranium Total Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Total Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					

Drinking Water Chain o					5100 • F: 9(05.7:	12.5	8	35 Coopers Avenue Mississauga, ON L4Z 1Y2 F: 1.800.856.6261	Labo Arriva Arriva AGAT	al Co al Tei Job	ndit mpe	ion: ratu	ire:	12	Good - 8- 191	12.	5	(complete notes 12-2 65 0, 9.8
Client Information		Re	eport Inforn	nation	0				Report Format										
Company: Terraprobe 1 Contact: Paul Raeppie Address: 903 Barton Av Storey Creek L		1. Name: Paul Paul Pauple Email: Prepple & totropobe.cc 2. Name: Multiple Email: Prepple & totropobe.cc								Turnaround Time Required (TAT) * Regular TAT 7 to 14 business days 5 to 7 business days									
Phone: <u>105-643-7560</u> Fax: PO #: Client Project #: <u>7-19-0155</u> AGAT Quotation #:		Facility Type (Check all that are applicable) Large OR Residential OR Municipal OR Hereite and the second se									Rush TAT (please provide prior notification) 3 to 4 business days Rus 2 business days 2 business days surcha								
	ot Applicable ther (Please Spec	D R Dify) CL	O THE RESULTS AW WATER SAM LIENT IS RESPONSIBI O SO MAY DELAY REP		TING TO THE MO D BY HUMANS? SUBMIT LAB SERVIC		FICATIO	N (LSN) FOR	A'S LRMA?		s (Sch. 23)	(Sch. 24)					Ithanes	E.coli, Total Coliforms	Ŧ
SAMPLE IDENTIFICATION/LOCATION	DATE SAMPLED	TIME SAMPLED	VIE WATER # OF PLED TYPE * CONTAINERS RESIDUA		CHLORINE RESIDUAL (incl. Units)	ANDIA		со	ИE	Inorganics	Organics	Lead	Fluoride	Sodium	Turbidity	Trihalomethanes	E.coli, Tot	OWGA	
2942 67	Dec 23/19	10000	n R	7					tals with preser									\mathbf{V}	V
10 J - 1 2 - 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					100				DOI:	_							-		
Samples Taken By (Print Name and Sign):			* TAT is ex	xclusive of weeker	nds and statuto	ry holi	days. :	Prior arrar	ngements must be made wi	th the la	borato	ory in	order	r to su	ıbmit	Microb	iology	samp	les on Fridays
NOTIFICATION INFOF Waterworks Name: MOECCW (ie: Waterworks #): Contact: Email:		red to report ac TION FOR ADV Phone: After Hours Phone: Address/Location (if e	verse repor \mathcal{V}		Drinking Wate	er Act) - La	boratory	analysis will not comm Region: PHU Contact: Phone: Email:		_	_	_	_	_	ALTH	(MOH	1)	
Samples Relinquished By (Print Name and Sign): Analysis Relinquished By (Print Name and Sign): Danieles Relinquished By (Print Name and Sign): Camples Rolinquished Dy (Print Name and Sign): Document #: DIV-78-1512.009	que Dec	Date/Time Occ. 23/ Date/Time O3/19 Date/Time	Samples 2 AC 155 Samples Samples	Received By (Print Name Received By (Print Name Received By (Print Name Becaused By (Print Name) 0 0 0	Jqic and Signt	1	3 Dy	ha ha	Dec 23/19 11: Dec 23/19 11: Dec 2 Date/Time Dec 3	Scal 3 3	D'e	Copy Tow Opy	AGAT	an		Page DW			2 1 Public March 0, 20 11 of 11